Transflective liquid crystal display device

Liquid crystal cells – elements and systems – Particular structure – Having significant detail of cell structure only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S119000

Reexamination Certificate

active

06825902

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a liquid crystal display device, and in particular to a transflective liquid crystal display incorporating a transflective reflector inside a liquid crystal element thereof, capable of effecting bright display in black and white or in color in the case of either reflective display utilizing external light or transmissive display by backlighting.
2. Description of the Related Art
For a conventional reflection-type liquid crystal display device, there is in use mainly a liquid crystal display device of a constitution wherein a TN (twisted nematic) liquid crystal element or an STN (supertwisted nematic) liquid crystal element is disposed between a pair of polarizing films, and a reflective layer is installed on the outside of one of the polarizing films.
With the reflection-type liquid crystal display device of such a constitution, external light entering through one of the polarizing films from the visible side of the device is either absorbed by the other of the polarizing films or transmitted therethrough and reflected by the reflective layer installed on the outside thereof, going out towards the visible side after passing through again the liquid crystal element and the pair of the polarizing films, thereby effecting reflective display, depending on whether or not the direction of polarization of the external light is rotated when passing through the liquid crystal element.
That is, the external light entering from the visible side passes through two sheets of the polarizing films before reaching the reflective layer, and reflected light of the external light goes out towards the visible side after passing through again the two sheets of the polarizing films, thereby effecting white display, so that magnitude of light attenuation by the agency of the polarizing films increases, resulting in deterioration of brightness of images in display.
Moreover, since the reflective layer is installed on the outside of a glass substrate of the liquid crystal element, there arises a problem that shadows come to appear on display.
To cope with these problems, a single polarizing film reflection-type liquid crystal display device, capable of effecting display with just one sheet of polarizing film, has since been proposed. With such a liquid crystal display device having one sheet of polarizing film, brightness of images in display can be improved in comparison with that for the case of the conventional reflection-type liquid crystal display device employing the two sheets at the polarizing films. Further, with the single polarizing film reflection-type liquid crystal display device, a reflective layer is formed inside a liquid crystal element, thereby enabling the problem of the shadows appearing on display to be solved.
Such a single polarizing film reflection-type liquid crystal display device is composed of one sheet of polarizing film, one sheet of retardation film, and at liquid crystal element incorporating a reflective layer, as disclosed in, for example, JP, 04-97121, A. Further, a single polarizing film reflection-type liquid crystal display device employing an optical compensatory element having a structure twisted in the direction opposite to the twist direction of a liquid crystal layer in place of a retardation film is also disclosed in, for example, JP 10-123505, A.
With such conventional single polarizing film reflection-type liquid crystal display devices as described above, however, it is not possible to install a backlight because the reflective layer does not allow light to pass therethrough so that it has not been possible to see display at places where external light is dim or at night.
Accordingly, there has been developed a transflective liquid crystal display device, employing a transflective layer serving as a half-mirror, made up of a very thin aluminum film with thickness in a range of 0.01 to 0.03 &mgr;m, formed by the vapor deposition method or the sputtering method as a reflective layer, or employing a transflective layer provided with an opening every pixel by use of photoetching method as a reflective layer. As a result, display can be effected by lighting up a built-in backlight of the liquid crystal display device at places where external light is dim or at night.
However, in the case of using a thin metal film for the half-mirror, significant variation in transmittance of the transflective layer occurs depending on the thickness thereof, and there will be an increase in fluctuation of transmittance as well as reflectance of the transflective layer at the time of production. For these reasons, such a transflective liquid crystal display device as described has a drawback in that large dispersion will occur in brightness of images in the case of reflective display utilizing external light, and in luminance in the case of transmissive display by backlighting.
A liquid crystal display device employing a transflective layer provided with an opening for every pixel has been disclosed in, for example, JP, 10-282488, A.
However, with such a liquid crystal display device as described above, a reflective layer made up of an aluminum film is formed on top of a first substrate
1
composing a liquid crystal element, and an opening
29
is provided in regions of the reflective layer, corresponding to respective pixels, thereby forming a transflective
27
as shown in FIG.
12
. The transflective layer
27
has a thickness in the order of 0.1 to 0.2 &mgr;m, and even after a planarization treatment is applied thereto by providing a protective film (top coat layer)
8
, the surface of the protective film
8
and the surface of first electrodes
3
formed on top of the protective film
8
are left with differences in level of 0.05 &mgr;m or more.
Due to the differences in level, there occur a difference of 0.05 &mgr;m or more between cell gaps, which are gaps holding a liquid crystal layer sandwiched between the first substrate
1
and a second substrate (not shown) in-between, namely, between those opposite to the respective openings
29
of the transflective layer
27
, and those opposite to regions thereof, other than the respective openings
29
. As a result, there have been encountered cases where display unevenness, and in the worst case, alignment defect have occurred thereby degrading display quality considerably. Particularly, in the case of using and STN liquid crystal element having a twist angle in a range of 180 to 260°, there is the need for strictly controlling the cell gaps, however, in such a case, it becomes difficult to implement controlling the same, so that display unevenness tends to occur due to the difference between the cell gaps, and further, there have arisen even cases where alignment defect has occurred due to the induction domain typical of STN liquid crystal during a period of applying a driving voltage.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to solve the problems described above, encountered by conventional liquid crystal liquid devices of various types and to provide a transflective liquid crystal display device capable of effecting blight reflective display utilizing external light and transmissive display by backlighting, and having less display unevenness and less alignment defect with little fluctuation in display brightness.
To this end, the transflective liquid crystal display device according to the invention comprises a liquid crystal element composed of liquid crystal sandwiched between a first substrate and a second substrate, and a transflective layer installed on the inside of the first substrate, wherein the transflective layer is a thin metal film having transparent portions formed by means of anodic oxidation.
The transflective liquid crystal display device preferably further comprises a first polarizing film disposed on the outside of the second substrate of the liquid crystal element, a second polarizing film and a backlight, disposed in sequence on the outside of the first substrate.
As a result, an untrans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transflective liquid crystal display device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transflective liquid crystal display device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transflective liquid crystal display device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360958

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.