Unitized, pre-fabricated raised access floor arrangement,...

Static structures (e.g. – buildings) – With lifting or handling means for primary component or... – Position adjusting means; e.g. – leveling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S126600, C052S263000

Reexamination Certificate

active

06772564

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The invention relates generally to access floors, methods to assemble access floors and access floor leveling tools. This invention relates particularly to a unitized, pre-fabricated raised access floor system comprising stringer frames which can be joined to form multiple geometrical structures. Multiple leveling pedestals can be attached to the stringer frames to form Modules in the field or in the factory, with the pedestals being detachable, fixed to the stringer frames via retractable hinges, or both. The invention also relates to an automatic, computerized leveling tool.
2. Description of the Background Art
In the early days of computers and related technology, the equipment was commonly housed in so-called computer rooms, which were generally contained within the area of a work group. In order to maintain and maximize the utility of multiple large pieces of computer equipment within a confined space, it was necessary to provide power and electronic communication to and between each piece. The computer equipment of the early days generated large quantities of heat, thus requiring cooling equipment. The large amount of cabling had to be stored at floor level. Likewise, the supply of chilled air should ideally have originated at floor level. The abundant cabling became a physical impediment to computer room workers. The chilled air being forced into the room, generally from one or more wall or ceiling mounted diffusers, did not efficiently cool the equipment and resulted in working environments too cold for computer room workers. The advent of the raised floor, commonly referred to as computer room flooring, solved many of the problems caused by cabling and cooling requirements.
Early raised floors were basically crawl spaces built in place some distance above the primary floor (“subfloor”) of the building. The raised floor was built within the boundaries of the computer room leaving the surrounding work areas available for general work functions. Areas which did not include desktop word or data processing usually were not fitted with access floors. Cabling could then be placed in the computer room in the space created between the subfloor and the raised floor. In the most common arrangements, the crawl space between the subfloor and the raised floor had removable hatches positioned in locations where cable connections occurred. Hatched openings in the raised floor were located above cable connections. Openings, for chilled air ducts to pass through, were positioned adjacent to computer equipment so that chilled air could be supplied close to each piece of equipment at floor level. As computer equipment and their layout within a computer room evolved, it became necessary for raised floor technology to evolve accordingly.
The early raised floor designs lacked versatility. That shortcoming brought about later improved designs which evolved in today's access floors. Access floors, in their current form, have been widely used for many years. Common access floors are two-feet square finished floor panels which sit on vertical panel corner pedestals at some uniform elevation above a subfloor. Each corner pedestal is usually shared by four 2 ft by 2 ft finish floor panels. The panels are screw-fastened to each corner pedestal. An alternate method of placing panels on pedestals utilizes horizontal structural members referred to as stringers, which commonly span three pedestals in two perpendicular directions. Once all pedestals are interconnected by stringers, i.e., screw-fastened to the pedestals, the 2 ft by 2 ft finish floor panels are placed on the matrix of stringers. The panels are either gravity-held on the stringers or screw-fastened to the stringers and pedestals. The space between the access floor and the subfloor can be utilized as a supply air plenum for heating, ventilating and air conditioning (HVAC).
An air diffuser grill can be inserted in a hole cut into certain panels allowing forced air into the plenum to flow up into the work space above the access floor. The forced air is generally supplied by a central HVAC plant. Every 2 ft by 2 ft panel of the access floor is removable, making the entire surface of the access floor accessible to the plenum. The plenum can serve as a chase way for all power, voice and data cabling at the same time it serves as the supply air plenum. Return air intake grills and ducts are located at ceiling elevation above the access floor.
Computer and communication applications now go beyond the computer rooms of the past. The modem information technology (“IT”) worker is commonly equipped with a personal computer adapted for voice and data telecommunication across long distances between large numbers of people and facilities. The typical IT worker requires and usually occupies between 70 and 100 square feet of work space floor area. This is equivalent to an area made up of 25 two-foot square access floor panels. Each IT worker's work station requires electrical power for personal computer equipment which generally has integrated telecommunication equipment for voice and data transmission. Power supply, and voice and data cabling run bi-directionally between centralized computer rooms and IT workers within a facility.
Access floors are now more effective in the entire work space of all IT workers and centralized computer rooms. The high occupancy density of contemporary IT work space, typically 200 to 300 IT workers per building floor, approximately 25,000 square feet, requires intense use and long runs of power, voice and data cabling. The high human occupancy associated with equal numbers of personal computers increases building heat loads requiring greater demands for air-conditioning. In spite of the increased air-conditioning requirements of today's office buildings, the contemporary access floor is essentially the same floor which was primarily utilized in early computer rooms.
Access floors are now installed in expansive areas far beyond computer rooms throughout entire buildings. Access floor manufacturing involves many separate parts and pieces requiring labor intense assembly in the field in far less than ideal work conditions. The installation of contemporary access floors, if not planned and scheduled meticulously, can have a significant negative impact on building construction. By the nature of the work involved, the installation of access floors directly affects the construction sequencing, scheduling, and cost. The finished floor panels used in contemporary access floors are manufactured with heavy weight materials, which add significantly to the handling and shipping cost, and logistics. The air diffusers used in connection with access floors are difficult to install and adjust, and usually do not satisfy both machine and human air diffusion and cooling requirements.
Access floors were originally designed for the specific application of providing raised floors in computer rooms. A 2,500 square foot computer room can support approximately 850 IT workers occupying 85,000 square feet of other work space floor area. Nonetheless, due to the lack of innovations in the access floor technology, today's access floors still require construction industry skills and methods that only allow the efficient installation of a relatively small number of floors in relatively small, specialized areas of buildings. State of the art computer applications, however, demand large quantities of access flooring in expansive areas of larger buildings. This demand is only expected to increase in years to come. Where today's access floor technology, including installation, may be appropriate for a relatively small single room area, it can be dismal for large expansive installations.
For example, approximately 5,900 separate components and fasteners are required to install a commonly used access floor in a 2,500 square foot computer room. In today's office and industrial complexes, it is not unusual to encounter a computer room supporting 850 IT workers and occu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Unitized, pre-fabricated raised access floor arrangement,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Unitized, pre-fabricated raised access floor arrangement,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unitized, pre-fabricated raised access floor arrangement,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3360331

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.