Method for bacterially treating tank toilet systems and...

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S606000, C210S610000, C210S617000, C210S622000, C210S631000, C210S916000

Reexamination Certificate

active

06743361

ABSTRACT:

TECHNICAL FIELD
The present invention relates in general to a method for bacterially treating small-tank toilet systems and an apparatus for using same, and in particular, bacterially treating small-tank portable toilets, such as toilet systems in airplanes, busses, campers, trains, boats, and free-standing portable toilets.
BACKGROUND INFORMATION
On airplanes, busses, campers, trains, boats, small-tank toilet systems are often utilized. Such systems are also used in other portable systems, such as free-standing portable toilets (such as PORTA POTTI® toilet systems), that can be located in a stationary place for periods of time. Typical toilet systems have been described in U.S. Pat. No. 3,067,433 to Dietz et al.; U.S. Pat. No. 3,356,221 to Katona et al.; U.S. Pat. No. 3,473,171 to Palmer; and U.S. Pat. Nos. 3,567,032 and 3,662,888 to Kemper, all of which are incorporated herein by reference.
Although, it may be larger, a small tank is generally a tank that holds approximately 35-40 gallons of fluid or less. A large tank is generally a tank that holds approximately around 120 gallons of fluid. The use of small-tank toilet systems creates several problems unique from those of large-tank toilet systems and other toilet systems.
For instance, in small-tank toilet systems, the flushing fluid may be held or recirculated for a period of time; subsequently, the flushing fluids, including all materials collected in the system (i.e. the human waste products), are periodically drained from the system. Thereafter, the system is recharged with fresh flushing fluid.
In the prior art small-tank toilet systems, recirculation of the flushing fluid often requires the flushing fluid be deodorized and/or disinfected. For instance, formaldehyde and glutaraldehyde have been used to disinfect flushing fluid. However, because of environmental concerns about the use of volatile organic compounds (VOCs), government regulations are increasingly restricting use of formaldehyde and glutaraldehyde.
Various attempts have been made to find alternative treatments for flushing fluids. Quaternary amines exhibit some anti-microbial action and, thus, have some ability to prevent the development of odors in the fluid, but are very irritating to the skin. Moreover, many of these compounds are corrosive, and their use in closed toilet systems, including small-tank toilet systems, is prohibited by many companies.
U.S. Pat. Nos. 5,709,872 and 6,066,293 to Van Rees discloses a toilet flushing fluid made with phospholipids, and in particular synthetic phospholipids. This system employs the toilet flushing fluid with a concentration of phospholipid effective to prevent the odors from developing in the fluid by killing bacteria in the fluid or at least inhibiting the propagation of bacteria in the fluid. The flushing fluid of this system may also contain a deodorant or scent to mask whatever odors do develop in the flushing fluid.
The deodorizing or scenting the fluid and/or using anti-bacterial materials does not permanently eliminate the components collected in the system, particularly the grease molecules that are collected and built up through the use of the system. Rather, the prior art systems utilize solvents, emulsifiers, and degreasers that sever the bonds of the individual grease molecules so that these molecules become suspended in the cleaning solution. This means that the individual molecules remain intact; thus, they will later reatnach themselves to other suspended grease molecules once the cleaning solution becomes less effective (such as through dilution or cooling). It is for this reason that flushing fluids from this system cannot be readily disposed by merely injecting the discharged fluids into standard sanitation sewage systems. Typically, the sewage systems have strict regulations that prohibit the discharge of such fluids into their systems and, if they do accept such fluids, these systems typically add or charge high disposal fees to accept this waste. This is because the grease in the systems will recombine downstream and cause further problems in the sewage process. Also the anti-bactericide used in the prior art systems could seriously upset the function of the municipal sanitation systems.
The prior art has also used enzymes that do more than solvents, emulsifiers, and degreasers, in that that the bonds between the glycerol and fatty acids are broken, which makes the components of the grease molecules soluble in water. However, this still does not completely solve the problem in that the grease molecules will again combine downstream to make the complete molecular structures.
Accordingly, there is a need for a small-tank toilet system that cleans the flushing fluid in a manner such that the grease molecules from the human waste products are destroyed, rather than relocated to another place in which the problem continues to exist.
Moreover, the prior art uses deodorant or scent to mask the odors that develop in the flushing fluid. Masking the odors does not rid the odors that develop in the flushing fluid, they merely attempt to overwhelm them. Generally, as more and more human waste products are collected in the system during a period, the masking properties of the deodorant or scent become less effective. This is particularly important in small-tank toilet systems because they are contained in small confined areas. Accordingly, there is further the need to create a small-tank toilet system that substantially eliminates the odors and not merely mask them.
Another problem in the prior art particular to the small-tank toilet systems is that the collection of grease and other materials generally can effect the color of the flushing fluid in the system. Accordingly, there is further the need to create a small-tank toilet system that has a flushing fluid that retains its color throughout its use.
Another problem is that small-tank toilet systems must utilize chemicals that are safe for human contact and do not corrode the fixtures of the system. According, there is further the need to create a small-tank toilet system that is safe for human contact and will not corrode the system's fixtures.
These and other features and advantages will be in part apparent, and in part pointed out hereinafter.
SUMMARY OF THE INVENTION
An improved process for treating a small-tank toilet system has been discovered in which a commercial bacterial agent bacteria, such as
Bacillus licheniformis, Pseudomonas florescens, Alcaligenes latus, Bacillus subtilis
, and
Pseudomonas putida
, is used in combination with a surfactant. Unlike the prior art that uses anti-bacterial agents, the improved process severs the components of the grease molecules in the human waste products and breaks them into smaller sizes such that the enzymes produced by their bacteria can break down the grease molecules so that the bacteria can absorb the carbon atoms, which is the bacteria's basic food source. The results of this destruction of the grease molecules break down the molecules, which then recombines as the simple byproducts: carbon dioxide, water soluble fatty acids, and water.
Since the grease molecules are destroyed, they each cannot recombine downstream. Because of this result, the resulting flushing fluid is more readily disposable since the resulting flushing fluid has sufficient qualities that allows it to be accepted in standard sewage systems.
Moreover, because the grease molecules are destroyed, the odors of the material decomposition collecting in the flushing fluid are nearly, if not completely, eliminated because they are also broken down by the active bacteria. It was discovered that the bacteria used in the absence of the surfactant would dissipate the odors of the grease molecules. However, gaseous ammonia is formed, as a byproduct of the process employed by the bacteria to break down the collected grease materials. While not as prevalent in other toilet systems, such as for large-tank toilet systems, these ammonia fumes were quite pungent in the small-tank toilet systems. The use of the surfactant in combinati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for bacterially treating tank toilet systems and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for bacterially treating tank toilet systems and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for bacterially treating tank toilet systems and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3359635

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.