Cooling apparatus

Heat exchange – Intermediate fluent heat exchange material receiving and... – Liquid fluent heat exchange material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S104330, C165S080400, C361S699000, C361S700000, C174S015200, C257S714000, C257S716000

Reexamination Certificate

active

06742574

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a cooling apparatus for cooling a refrigerant, that boils when receiving heat from a heat generating element, through heat exchange between the boiling refrigerant and a cooling medium.
2. Description of the Related Art
For example, a cooling apparatus boiling and condensing refrigerant is known for cooling an inverter which conducts a large amount of electric current for operating a vehicle. This cooling apparatus contains a refrigerant container for storing therein liquid refrigerant and a heat dissipating portion for cooling the refrigerant, that boils when receiving heat generated by a heat generating element mounted on the refrigerant container, through heat exchange between the boiling refrigerant and a cooling medium (for example, cooling air or cooling water).
Heat generated from the heat generating element is transferred to the heat dissipating portion from the refrigerant container when the refrigerant boils or vaporizes and is emitted to the cooling medium as latent heat when the refrigerant is cooled to condense at the heat dissipating portion.
In many conventional cooling apparatuses, however, the heat dissipating portion contains tubes and fins and is fabricated by inserting the tubes in the refrigerant container. In this construction, the dimensional accuracy needs to be strictly controlled, for the tubes and holes in the refrigerant container into which the tubes are inserted, in order to prevent the leakage of the refrigerant, this causing a problem that the production of the components becomes difficult.
In addition, as a construction needs to be provided on the refrigerant container for controlling the insertion amount of the tubes, a volume occupied by the refrigerant container becomes large for the height of the cooling apparatus. As a result, as the volume of the heat dissipating portion becomes small, this causes a problem that the cooling capability becomes insufficient.
SUMMARY OF THE INVENTION
The invention was made in view of the above situation and an object thereof is to provide a cooling apparatus boiling and condensing refrigerant which can facilitate the production of the components involved and reduce the volume that is to be occupied by a refrigerant encapsulating portion (a refrigerant tank portion) so as to expand a heat dissipating surface area of the cooling apparatus.
According to an aspect of the invention, there is provided a cooling apparatus boiling and condensing refrigerant having a refrigerant tank portion having a heat generating element mounted on a surface thereof and adapted to store therein a refrigerant, and a heat exchanging portion for executing heat exchange between the refrigerant that boils by being heated by heat generated by the heat generating element and a cooling medium, and constructed, as a whole, by stacking a number of plate-like members, wherein first openings that form part of the refrigerant passages and second openings that form part of the cooling passages are provided in the plurality of plate-like members which are used for the heat exchanging portion, the first opening portions being adapted to establish a communication with an internal space of the refrigerant tank portion.
According to the construction, as the cooling apparatus including the refrigerant tank portion and the heat exchanging portion has a stacked construction as a whole, tubes and fins, which are used to constitute the conventional heat dissipating portion, can be eliminated. As a result, as there exists no tube needing to be assembled to be inserted into the refrigerant tank portion, no strict dimension control of component parts is required and therefore the production of component parts is facilitated. In addition, as the adoption of the stacked construction allows the component parts to be assembled from one direction, automation of the assembling process can be easily arranged.
Furthermore, as the elimination of the conventional component parts obviates the necessity of providing the construction for controlling the inserting amount of the tubes into the refrigerant tank portion on the same refrigerant tank portion, the volume of the refrigerant tank portion which occupies part of the overall volume of the cooling apparatus can be reduced. As a result, the heat dissipating surface area of the cooling apparatus can be expanded to thereby improve the heat dissipating performance thereof.
According to another aspect of the invention, there is provided a cooling apparatus boiling and condensing refrigerant having a refrigerant tank portion having a heat generating element mounted on a surface thereof and adapted to store therein a refrigerant, a refrigerant diffusing portion for diffusing the refrigerant that boils by being warmed by heat generated by the heat generating element and a heat exchanging portion provided between the refrigerant tank portion and the refrigerant diffusing portion for executing heat exchange between the boiling refrigerant and a cooling medium, and constructed, as a whole, by stacking a number of plate-like members, wherein first openings that form part of refrigerant passages and second openings that form part of cooling passages are provided in those of the plurality of plate-like members which are used for the heat exchanging portion, the first opening portions being adapted to establish communications with internal spaces of the refrigerant tank portion and the refrigerant diffusing portion.
According to the construction, as the cooling apparatus including the refrigerant tank portion, as well as the heat exchanging portion and the refrigerant diffusing portion has a stacked construction as a whole, tubes and fins, which are used to constitute the conventional heat dissipating portion, can be eliminated. As a result, as there exists no tube needing to be assembled to be inserted into the refrigerant tank portion, no strict dimensional control of component parts is required and therefore the production of component parts is facilitated. In addition, as the adoption of the stacked construction allows the component parts to be assembled from one direction, the automation of the assembling process can be easily arranged.
Furthermore, since the elimination of the conventional tubes obviates the necessity of providing the construction for controlling the inserting amount of the tubes into the refrigerant tank portion on the same refrigerant tank portion, the volume of the refrigerant tank portion which occupies part of the overall volume of the cooling apparatus can be reduced. As a result, the heat dissipating surface area of the cooling apparatus can be expanded to thereby improve the heat dissipating performance thereof.
In the cooling apparatus according to the invention, two different types of plate-like members, which are different from each other in at least the location of the second openings, are used for the heat exchanging portion, the two types of plate-like members being stacked alternately so that the second openings thereof partly communicate with each other.
According to the construction, the second openings provided in the two types of plate-like members partly communicate with each other to thereby form the cooling passages through which the cooling medium is allowed to flow.
In the cooling apparatus according to the invention, the two types of plate-like members each have pillar portions which divide the respective second openings, the locations of the pillar portions being different from each other between the two types of plate-like members.
According to the construction, as the plate-like portions have the pillar portions, the strength of the plate-like portions can be ensured. In addition, as the locations of the pillar portions are different from each other between the two types of plate-like portions, winding cooling passages, not linear cooling passages, extending around the pillar portions, can be formed.
In the cooling apparatus according to the invention, inner fins are inserted in the refrigerant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Cooling apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Cooling apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooling apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.