Methods for differentiating and monitoring parathyroid and...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007940, C436S518000, C436S536000, C436S811000, C530S388240, C530S389200

Reexamination Certificate

active

06743590

ABSTRACT:

TECHNICAL FIELD
The present invention relates to novel methods and devices for differentiating in a patient parathyroid diseases, such as hyperparathyroidism, from normal or non-disease states. One detects whole or non-fragmented (1 to 84) parathyroid hormone in a biological sample and also a large non-whole parathyroid hormone peptide fragment that can function as a parathyroid hormone antagonist. By either comparing values or using independently the value of either the large non-whole parathyroid hormone peptide fragment, the whole parathyroid hormone, or the combination of these values one can differentiate parathyroid and bone related disease states, as well as differentiate such states from normal states.
BACKGROUND ART
Calcium plays an indispensable role in cell permeability, the formation of bones and teeth, blood coagulation, transmission of nerve impulse, and normal muscle contraction. The concentration of calcium ions in the blood is, along with calcitrol and calcitonin, regulated mainly by parathyroid hormone (PTH). Although calcium intake and excretion may vary, PTH serves through a feedback mechanism to maintain a steady concentration of calcium in cells and surrounding fluids. When serum calcium lowers, the parathyroid glands secrete PTH, affecting the release of stored calcium. When serum calcium increases, stored calcium release is retarded through lowered secretions of PTH.
The complete form of human PTH, sometimes referred to in the art as hPTH but referred to in the present invention either as whole PTH or wPTH, is a unique 84 amino acid peptide (SEQ ID NO. 1), as is shown in FIG.
1
. Researchers have found that this peptide has an anabolic effect on bone that involves a domain for protein kinase C activation (amino acid residues 28 to 34) as well as a domain for adenylate cyclase activation (amino acid residues 1 to 7). However, various catabolic forms of clipped or fragmented PTH peptides also are found in circulation, most likely formed by intraglandular or peripheral metabolism. For example, whole PTH can be cleaved between amino acids 34 and 35 to produce a (1-34) PTH N-terminal fragment and a (35-84) PTH C-terminal fragment. Likewise, clipping can occur between either amino acids 36 and 37 or 37 and 38. Recently, a large PTH fragment referred to as “non-(1-84) PTH” has been disclosed which is clipped closer to the N-terminal end of PTH. (See R. LePage et alia, “
A non
-(1-84)
circulating parathyroid hormone
(PTH)
fragment interferes significantly with intact PTH commercial assay measurements in uremic samples
” Clin Chem (1998); 44: 805-810.)
The clinical need for accurate measurement of PTH is well demonstrated. Serum PTH level is one of the most important indices for patients with the following diseases: familial hypocalciuria; hypercalcemia; multiple endocrine neoplasia types I and II; osteoporosis; Paget's bone disease; primary hyperparathyroidism—caused by primary hyperplasia or adenoma of the parathyroid glands; pseudohypoparathyroidism; and renal failure, which can cause secondary hyperparathyroidism.
PTH plays a role in the course of disease in a patient with chronic renal failure. Renal osteodystrophy (RO) is a complex skeletal disease comprising osteitis fibrosa cystica (caused by PTH excess), osteomalacia—unmineralized bone matrix (caused by vitamin D deficiency), extraskeletal calcification/ossification (caused by abnormal calcium and phosphorus metabolism), and adynamic bone disease (contributed to by PTH suppression). Chronic renal failure patients can develop RO. Failing kidneys increase serum phosphorus (hyperphosphoremia) and decrease 1,25-dihydroxyvitamin D (1,25-D) production by the kidney. The former results in secondary hyperparathyroidism from decreased gastrointestinal calcium absorption and osteitis fibrosa cystica from increased PTH in response to an increase in serum phosphorus. The later causes hypocalcemia and osteomalacia. With the onset of secondary hyperparathyroidism, the parathyroid gland becomes less responsive to its hormonal regulators because of decreased expression of its calcium and vitamin D receptors. Serum calcium drops. RO can lead to digital gangrene, bone pain, bone fractures, and muscle weakness.
Determining circulating biologically active PTH levels in humans has been challenging. One major problem is that PTH is found at low levels, normally 10 pg/mL to 65 pg/mL. Coupled with extremely low circulating levels is the problem of the heterogeneity of PTH and its many circulating fragments. In many cases, immunoassays have faced substantial and significant interference from circulating PTH fragments. For example, some commercially available PTH kits have almost 100% cross-reactivity with the non-(1-84) PTH fragment, (see the LePage article).
PTH immunoassays have varied over the years. One early approach is a double antibody precipitation immunoassay found in U.S. Pat. No. 4,369,138 to Arnold W. Lindall et alia. A first antibody has a high affinity for a (65-84) PTH fragment. A radioactive labeled (65-84) PTH peptide is added to the sample with the first antibody to compete for the endogenous unlabeled peptide. A second antibody is added which binds to any first antibody and radioactive labeled PTH fragment complex, thereby forming a precipitate. Both precipitate and supernatant can be measured for radioactive activity, and endogenous PTH levels can be calculated therefrom.
In an effort to overcome PTH fragment interference, immunoradiometric two-site assays for intact PTH (I-PTH) have been introduced, such as Allegro® Intact PTH assay by the Nichol's Institute of San Juan Capistrano, California. In one version, a capture antibody specifically binds to the C-terminal portion of hPTH while a labeled antibody specifically binds to the N-terminal portion of the captured hPTH. In another, two monoclonal antibodies were used, both of which attached to the N-terminal portion of hPTH. Unfortunately, these assays have problems in that they measure but do not discriminate between wPTH and non-whole PTH peptide fragments. This inability comes to the fore in hyperparathyroid patients and renal failure patients who have significant endogenous concentrations of large, non-whole PTH fragments.
Recently, researchers have made a specific binding assay directed to the large N-terminal PTH fragments. (See. Gao, Ping et alia “
Immunochemicalluminometric assay with two monoclonal antibodies against the N
-
terminal sequence of human parathyroid hormone
”, Clinica Chimica Acta 245 (1996) 39-59.) This immunochemiluminometric assay uses two monoclonal antibodies to detect N-terminal (1-34) PTH fragments but not mid-portion PTH fragments or C-terminal PTH fragments. A key factor in the design of these assays is to eliminate any reaction with C-terminal PTH fragments.
DISCLOSURE OF THE INVENTION
The present invention relates to novel methods and devices for differentiating in a patient parathyroid diseases, (such as primary hyperparathyroidism, secondary hyperparathyroidism, and stages thereof), from normal or non-disease states; for monitoring the function of parathyroid glands either during or after treatment, i.e., intra-operation and after operation parathyroid function monitoring as well as therapeutic treatment; and also for monitoring the effects of therapeutic treatments for parathyroid related bone diseases and hyperparathyroidism. One detects the level in the serum or blood of at least one of three different parameters, namely, whole or non-fragmented parathyroid hormone in a biological sample, a large non-whole parathyroid hormone peptide fragment that can function as a parathyroid hormone antagonist, or the combination of the two values. By comparing the two values or by examining independently one of the above three values, one can differentiate parathyroid and bone disease states, as well as differentiate such states from normal states, as the relationship between these values, as well as the values themselves, change significantly between a normal person and a patient with a parathyroid disease.
The pres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for differentiating and monitoring parathyroid and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for differentiating and monitoring parathyroid and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for differentiating and monitoring parathyroid and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357694

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.