Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...
Reexamination Certificate
2002-06-14
2004-06-08
Gorr, Rachel (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
From reactant having at least one -n=c=x group as well as...
C528S064000, C427S425000, C427S385500
Reexamination Certificate
active
06747117
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a polyurethane composition useful for coating cylindrical parts. More particularly, the present invention relates to a polyurethane composition comprising an isocyanate-terminated prepolymer and a curative mixture.
2. Description of Related Art
A variety of elastomeric materials can be used to cover parts that require protection. Polyurethane elastomers are used as coverings in applications where abrasion and tear resistance, good load bearing characteristics, high hardness, solvent resistance, and good flex fatigue resistance are required.
In steel mill applications, for example, large numbers of rolls are used for guiding, tensioning, and otherwise engaging the steel strip during rolling and pickling operations. These rolls are subject to strong chemical agents used for pickling and cleaning the strip. Similarly, in paper mills, polyurethane coated rolls are used for supporting and conveying paper through high pressure nips of paper making machine assemblies such as press rolls, calender stacks, and the like. In cutting blanket applications, polyurethane is used to ensure the knife cuts all the way through the material being cut. It is important that the cuts left from the knife impressions do not grow and connect, as the polyurethane will chunk out if they do. Excellent cut growth resistance is desirable in this application.
Ruprecht et al., “Roll Covering by Rotational Casting with Fast Reacting PUR Systems”, Polyurethane World Congress 1991 (September 24-26) pp 478-481, describe rotational casting techniques useful for producing roll coverings using fast reacting polyurethane elastomer systems. In these systems, the polyurethane reaction mixture is metered through a movable mixing head that travels at constant speed in the axial direction along the rotating roll core, a short distance above its surface. The polyurethane reaction mixture solidifies very quickly, in a matter of seconds, to produce a polyurethane coating with a thickness buildup of 4-5 mm. Additional layers of the polyurethane reaction mixture are applied until the desired thickness is achieved.
U.S. Pat. No. 5,895,806 discloses a polyurethane composition comprising: a) an isocyanate-terminated polyurethane prepolymer; and b) a curative agent comprising i) a polyol; ii) an aromatic diamine; iii) a thixotropic aliphatic amine; and iv) a thixotropic colloidal additive.
U.S. Pat. No. 5,895,689 discloses a method for coating a cylindrical object which comprises applying to the cylindrical object an effective amount of a polyurethane composition comprising: a) an isocyanate-terminated polyurethane prepolymer; and b) a curative agent comprising i) a polyol; ii) an aromatic diamine; iii) a thixotropic aliphatic amine; and iv) a thixotropic colloidal additive, e.g., the composition of the '806 patent. By employing the polyurethane composition containing dual thixotropic agents, a thicker coating was achieved per pass without any dripping or ridging. These polyurethane coating compositions have found wide commercial use on rigid substrates. These compositions, however, lack high cut growth resistance.
It is therefore an object of the present invention to provide a new polyurethane composition useful for covering cylindrical objects that has improved cut growth resistance. It is a further object of this invention to provide a polyurethane composition which can be used in a rotational casting process.
SUMMARY OF THE INVENTION
The present invention is directed to a polyurethane composition that comprises:
A) an isocyanate-terminated polyurethane prepolymer; and
B) a curative agent, the curative agent includes a polyaspartic ester.
In another aspect, the present invention is directed to a method for coating a cylindrical object which comprises applying to the cylindrical object an effective amount of a polyurethane composition comprising:
A) an isocyanate-terminated polyurethane prepolymer; and
B) a curative agent, the curative agent includes a polyaspartic ester.
The most desirable embodiments of the composition and method of the invention include a curative agent with a co-curative agent selected from the group consisting of aromatic diamines and diols.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
For purposes of this invention, the term “isocyanate-terminated polyurethane prepolymer” means the reaction product formed when an excess of organic diisocyanate monomer is reacted with a polyol or polyol blend. Isocyanate-terminated polyurethane prepolymers are preferred in which the excess diisocyanate monomer is removed after the reaction with the polyol or polyol blend.
The organic diisocyanate monomer can be aromatic or aliphatic. Useful aromatic diisocyanates can include, for example, 2,4-toluene diisocyanate and 2,6-toluene diisocyanate (each generally referred to as TDI); mixtures of the two TDI isomers; 4,4′-diisocyanatodiphenylmethane (MDI); p-phenylene diisocyanate (PPDI); diphenyl-4,4′-diisocyanate; dibenzyl-4,4′-diisocyanate; stilbene-4,4′-diisocyanate; benzophenone-4,4′-diisocyanate; 1,3- and 1,4-xylene diisocyanates; and mixtures of the foregoing. Preferred aromatic diisocyanates for the preparation of the polyurethane prepolymers of the present invention include TDI, MDI, and PPDI.
Useful aliphatic diisocyanates can include, for example, 1,6-hexamethylene diisocyanate; 1,3-cyclohexyl diisocyanate; 1,4-cyclohexyl diisocyanate (CHDI); the saturated diphenylmethane diisocyanate known as H(12)MDI; isophorone diisocyanate (IPDI); and the like; and mixtures of the foregoing. A preferred aliphatic diisocyanate for use herein is H(12)MDI.
High molecular weight (MW) polyols useful in the preparation of the isocyanate-terminated polyurethane prepolymer have a number average MW of at least 250, e.g., polyethers, polyester polyols, and the like. The number average molecular weight of the polyol can be as high as, e g., about 10,000 or as low as about 250. A molecular weight of about 650 to about 3000 is preferred with a molecular weight of about 2000 being most preferred.
A preferred high MW polyol is a polyalkyleneether polyol having a general formula HO(RO)
n
H, wherein R is an alkylene moiety and n is an integer large enough that the polyether polyol has a number average molecular weight of at least about 250. Such polyalkyleneether polyols are well known and can be prepared by the polymerization of cyclic ethers, such as alkylene oxides and glycols, dihydroxyethers, and the like, employing methods known in the art
Another preferred high MW polyol is a polyester polyol. Polyester polyols can be prepared by reacting dibasic acids (usually adipic acid, but other components, such as sebacic or phthalic acid, may be present) with diols such as ethylene glycol; 1,2-propylene glycol; 1,3 propanediol, 1,4 butanediol; diethylene glycol; tetramethylene ether glycol, and the like. Another useful polyester polyol can be obtained by the addition polymerization of &egr;-caprolactone in the presence of an initiator.
Other useful high MW polyols include polycarbonates, which are commercially available from Bayer (Leverkusen, Germany), and polyols that have two hydroxyl groups and whose backbone is obtained by polymerization or copolymerization of such monomers as butadiene and isoprene.
Particularly preferred polyols useful in the preparation of the isocyanate-terminated polyurethane prepolymer of this invention include dihydroxypolyesters, polytetramethyleneether glycols (PTMEG), and the polycarbonates.
The isocyanate-terminated polyurethane prepolymers can be prepared by reacting the organic diisocyanate monomer with the polyol or polyol blend in a mole ratio of diisocyanate monomer to polyol or polyol blend ranging from 1.7:1 to 12:1, depending on the diisocyanate monomer being used. For example, when the diisocyanate monomer is TDI, the preferred mole ratio is from about 1.7:1 to about 3:1. When the diisocyanate monomer is MDI, the preferred mole ratio is from about 2.5:1 to about 5:1. The excess diisocyanate mon
Crompton Corporation
Dilworth Michael P.
Gorr Rachel
LandOfFree
Polyurethane/urea composition for coating cylindrical parts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyurethane/urea composition for coating cylindrical parts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyurethane/urea composition for coating cylindrical parts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3357436