Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2001-12-21
2004-11-30
Mullen, Jr., Thomas J (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S005920, C705S028000
Reexamination Certificate
active
06825766
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to inventory tracking and, more specifically, to radio frequency identification (RFID) systems. More specifically, the present invention discloses an industrial data capture system which utilizes a unique array of RFID scanner/antennas built into a choke-point portal, as well as RFID labels affixed to containers/units to be transported through the portal. Tracking software/hardware interfaces with the RFID scanner(s) and antennas in the choke point portal for interrogating and identifying specified information parameters associated with each of the label affixed containers. Additional aspects of the software/hardware include the ability to automatically identify load amounts associated with the cargo to be scanned (Unit Load Evaluation), as well as printing out shipping manifests and exporting information to shipping programs or other third party programs (Integrated Shipping Solutions).
2. Description of the Prior Art
The prior art is well documented with examples of radio frequency identification (again RFID) devices and systems. The underlying technology involved with RFID systems is, by itself, reasonably well known in the art and includes such essential components as a scanner, with an antenna, for issuing a frequency specific signal. One or more labels (or tags) is affixed to an asset or article of some sort to be tracked and, upon the label or tag being subjected to the frequency specific signal, is energized to issue a response signal read by processor components interfacing or built into the scanner. The response signals provide such information as geographic position of the article/asset or an identification of the contents of the asset.
A significant number of prior art patents explain in additional detail specific technical applications of RFID systems and a first example of this is set forth in U.S. Pat. No. 6,150,921, issued to Werb et al., which teaches a system for tracking mobile tags. Cell controllers with multiple antenna modules generate a carrier signal received by the tags, which in turn shift the frequency of the carrier signal, modulate an identification code onto it, and transmit the resulting tag signal at randomized intervals. The antennas in turn receive and process the response, and determine of the presence of the tags by proximity and triangulation. Distance of a tag from an antenna is then calculated by measuring a round trip signal time and the cell controllers export data from the antenna to a host computer which, upon collecting the data, resolves them into positional estimates which are archived in a data warehouse such as an SQL Server.
U.S. Pat. No. 6,237,051, issued to Collins, teaches asset tracking within and across enterprise boundaries. A data label is secured to each asset to be tracked, as well as for each location in the enterprise. Locational history data of the asset is related to other asset data in a relational database. Assets typically include system components and the data label, in the preferred embodiment, is a code label utilizing a code which ensures that each label is unique to the asset or location to which it is attached, the location further being defined as both geographical coordinate locations, as well as location identity within which the asset (or other system component) may be housed. In response to a scanned asset label, a menu of allowable activities is presented which so that the person assigned to an asset-associated task may easily make entries into the database of the code assigned to the task performed and which, in addition to the asset data and location aspects, provides tracking of components of complex systems over time and in order to build complex relational records.
Finally, U.S. Pat. No. 5,777,561, issued to Chieu et al., teaches a method for selecting groups of radio frequency (RF) transponders (or tags) for communication between a base station and the tags. The tags are selected into groups according to physical attributes of the signal sent by the tags to the base station, or according to the physical response of the tags to a physical attribute of the signal sent from the base station to the tags in order to simplify and reduce the time frame for communication with the tags.
SUMMARY OF THE PRESENT INVENTION
As stated previously, the present invention discloses an industrial data capture system which utilizes a unique array of RFID scanner/antennas built into a choke-point portal, as well as RFID labels affixed to containers/units to be transported through the portal and a tracking software/hardware interface, with the RFID scanner(s) and antennas, for interrogating and identifying specified information parameters associated with each of the label affixed containers. The data capture system and method provides significant improvements, over such as conventional barcode and data entry technologies, in both accuracy of data collection and retention, as well as time savings, ranging from a multiple factor of 100 to 1000 times faster, respectively than these prior art technologies.
A “U” shaped, portal is provided with first and second upwardly extending sides and an interconnecting top which defines a doorway. The portal is located at a “choke point” location through which cargo (or freight) must pass and such as between a warehouse location within a facility and a truck loading area. Built into the portal is an RFID scanner and a plurality of nine antennas, typically three (3) being located per each of the three interconnected sides defining the portal. The antennas are uniquely arranged in both position and angular array so that they substantially cover the three dimensional space preceding the portal doorway.
Each of the cargo or freight containers includes an affixable label, the label including a simplified circuit which, upon being energized by a scanning field emanating from the RFID portal antennas, such field typically being according to a specified frequency range, issues an output signal. Upon reading a signal outputted from each of the labels, a selected antenna transmits this information to the portal scanner which in turn deactivates the tag to prevent it from being multiply scanned.
Both computerized software and hardware, in the form of an on-site (or remotely located) software based operating system working in combination with a portable and vehicle (forklift) operated computer system (portable palm or laptop) is provided and receives information from the portal scanner (an optional CPU) as to the container labels being scanned. The operating software confers with a manifest of all cargo within the facility and, as a label pre-identified and associated by that manifest with a given cargo is scanned, the system acknowledges this and updates the manifest.
The software provides a wide array of features to the present invention, including, according to its main embodiment, the ability to automatically and quickly identify cargo being transported through the portal for shipping from the location. Additional software based features include the ability of the system to automatically evaluate and identify a unit load (ULE), concurrent with scanning that load which is supported upon a forklift and without the necessity of the lift operator pre-entering the cargo quantity.
Another software module is identified as an integrated shipping solution (ISS) and which allows the gathering of information, such as into a compiled file corresponding to a given truckload of cargo, and for printout or export to third party programs or applications. A remote portal scanning interface (RPSI) works in combination with remote located terminals (such as a forklift mounted laptop or Palm Pilot®) and in order to communicate the software program which operates the portal scanning interface (PSI) and to thereby allow the fork operator to remotely control (or override) the portal.
Additional envisioned aspects of the software component include the provision of customer order interfaces (COI) which allow orders to be en
Genei Martin
Hewitt Matthew C.
Hobson Tim
Parrent Travis M.
Genei Industries, Inc.
Mullen, Jr. Thomas J
LandOfFree
Industrial data capture system including a choke point... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Industrial data capture system including a choke point..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Industrial data capture system including a choke point... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3354490