Surgery – Instruments – Means for inserting or removing conduit within body
Reexamination Certificate
2001-04-26
2004-08-03
Bennett, Henry (Department: 3743)
Surgery
Instruments
Means for inserting or removing conduit within body
Reexamination Certificate
active
06770080
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is generally related to medical devices and apparatus. In particular, the invention provides systems, methods, devices, and kits for treating a patient's ear. In one embodiment, the invention provides a system and method for myringotomy with or without tympanostomy tube placement.
Otitis media is among the most common diagnosis made by pediatricians. A majority of children may have at least one episode of otitis media (“earache”) prior to their third birthday. Otitis media is often caused by an inability of the eustachian tube to drain fluid from the middle ear. Otitis media is often treated with antibiotics.
A significant number of children exhibit recurrent episodes of otitis media and/or otitis media with effusion. Treatment of these more severe cases often involves the placement of a tympanostomy tube through the tympanic membrane so as to provide adequate drainage of the middle ear and reduce the likelihood of future infections. Tympanostomy tubes provide fluid communication between the middle and outer ear, and typically fall out spontaneously within about a year of placement. Tympanostomy tube placement is among the most common surgical procedures performed in the pediatric population. It has been estimated that more than a million tympanostomy tubes may be placed each year, with typical patients being between about 18 months and 3 years of age at the time of the procedure.
Tympanostomy tube placement is typically performed in an out-patient surgery setting under general anesthesia. The external auditory canal and tympanic membrane are examined under microscopic visualization through a hand-held conical shaped speculum. An incision or myringotomy is made in the tympanic membrane, typically using an elongate, small profile scalpel which the physician extends through the conical speculum. Fluid may be aspirated through the myringotomy, and a tympanostomy tube is placed so as to extend through the tympanic membrane.
A wide variety of tympanostomy tubes are commercially available, and a still wider variety of others tubes have been proposed. A number of systems have been proposed to both perform the myringotomy and deploy the tympanostomy tube with a single treatment assembly. In recent years, more complex and expensive systems have been proposed for diagnosis or treatment of the tissues of the ear, including systems using laser energy for forming a myringotomy, video systems for imaging of the ear canal, and the like. These various alternatives have, not surprisingly, been met with varying degrees of acceptance.
A standard tympanostomy tube placement procedure is both effective and quite safe. Nonetheless, further improvements would be desirable. In particular, there are both risks and costs associated with out-patient surgical procedures performed under general anesthesia. For example, a significant portion of the risk and cost of tympanostomy tube placement is associated with the administration of general anesthesia, i.e., the need for an operating room, the presence of an anesthesiologist, and related recovery room time.
In light of the above, it would be desirable to provide improved devices, systems, methods, and kits for treatment of the tissue structures within the auditory canal. It would generally be beneficial if these improvements facilitated myringotomy with or without tympanostomy tube placement without having to resort to general anesthesia, thereby allowing these common procedures to be performed in a doctor's office (rather than in an outpatient surgical facility). It would be further beneficial to maintain or enhance the physician's control over the procedure by, for example, allowing verification of intended and actual tympanostomy tube placement location, enhanced viewing and control, and improved safety. It would further be desirable if these improvements could be provided while decreasing the overall procedure time, and ideally, at a reduced overall procedure cost.
SUMMARY OF THE INVENTION
The present invention provides improved devices, systems, methods, and kits for treating the tissue structures of the ear. The invention often makes use of a guide structure that can mechanically register a treatment probe with a target region of the tympanic membrane or eardrum. Mechanical registration may be provided by a structure which is fittingly received in an external auditory canal of the ear. The guide structure will often include a conformable body (typically comprising a compressible foam, or the like) so as to allow the guide structure to accommodate a range of differing auditory canal anatomy. The guide structure may further include an articulating mechanism for selectively orienting the treatment probe toward the target region of the tympanic membrane. The articulating mechanism will often selectively orient a probe lumen, with the treatment probe having a shaft fittingly sliding in the probe lumen so that engagement between a positioning surface of the guide structure and a tissue surface of the patient's ear maintains registration of the treatment probe. The guide structure may also support a videoscopic image capture device, illumination transmitting optical fibers, an aiming beam transmitter, and the like. Advantageously, such structures facilitate performing treatment procedures such as myringotomy, tympanostomy tube placement, and the like, under local (rather than general) anesthesia, often in a doctor's office (rather than an out-patient surgical facility).
In a first aspect, the invention provides a method for treating an ear of a patient. The ear has a tympanic membrane. The method comprise mechanically registering a guide structure with a target region of the tympanic membrane. The target region is treated by actuating a treatment probe while the treatment probe is oriented by the registered guide structure.
Orientational alignment between the guide structure and the tympanic membrane may be maintained by engagement between a surface of the guide structure and an external auditory canal. This engagement may be sufficient to maintain orientation of the treatment probe without manual support of the guide structure or treatment probe. The use of a conformable body of the guide structure can facilitate the orientation maintaining engagement. The conformable body may comprise a compressible foam, a solid elastomer, a balloon, or the like, and may optionally expand radially within the auditory canal. An agent (such as a local anesthesia agent, an antiseptic agent, an antibiotic agent, or the like) may be dispensed from the guide structure, the agent optionally being dispensed from the compressible foam. In alternative embodiments, one or more such agents may be dispensed before insertion of the guide structure and/or after its removal. In some embodiments, registration of the probe and target region may be provided at least in part by engagement (preferable in the form of gentle pressure) between the guide structure and the skull (often the side of the skull) of the patient.
The guide structure may be registered by articulating a treatment lumen of the guide structure relative to a positioning surface of the guide structure. For example, the guide structure may comprise a shaft eccentrically carrying the treatment lumen. The shaft may rotate within the auditory canal about an axis with the treatment probe precessing about the axis so as to orient the probe toward the target region. The positioning surface of the guide structure may be disposed over the shaft with a bearing therebetween to facilitate rotation without injury to the tissue surface engaged by the positioning surface. The shaft may flex during rotation so as to accommodate a bend of the auditory canal. The probe and/or other components of the treatment system within the guide structure may likewise flex during rotation.
Registration of the guide structure may be videoscopically directed, the guide structure optionally supporting a video image capture device. The tympanic membrane may be illuminated by the guide
Jones Christopher
Kaplan Aaron V.
Tartaglia Joseph
Vaughan Robert
Barrish, Esq. Mark D.
Bennett Henry
Dagostino Sabrina
Fenestra Medical, Inc.
Townsend&Townsend&Crew LLP
LandOfFree
Mechanically registered videoscopic myringotomy/tympanostomy... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mechanically registered videoscopic myringotomy/tympanostomy..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mechanically registered videoscopic myringotomy/tympanostomy... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3354256