Extrusion apparatus for three-dimensional modeling

Plastic article or earthenware shaping or treating: apparatus – Means feeding fluent stock from plural sources to common...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S131100, C425S174400, C425S375000

Reexamination Certificate

active

06749414

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the fabrication of three-dimensional objects using extrusion-based layered manufacturing techniques. More particularly, the invention relates to forming three-dimensional objects from multiple types of modeling materials that are extruded in a flowable state and solidify after being deposited onto a base.
Three-dimensional models are used for functions including aesthetic judgments, proofing the mathematical CAD model, forming hard tooling, studying interference and space allocation, and testing functionality. Extrusion-based layered manufacturing machines build up three-dimensional models by extruding solidifiable modeling material from a nozzle tip carried by an extrusion head onto a base. “Wetting” of the base by the extruded material serves to separate the modeling material from the tip. Movement of the extrusion head with respect to the base is performed in a predetermined pattern under computer control, in accordance with design data provided from a computer aided design (CAD) system. Examples of extrusion-based apparatus and methods for making three-dimensional objects are described in Valavaara U.S. Pat. No. 4,749,347, Crump U.S. Pat. No. 5,121,329, Crump U.S. Pat. No. 5,340,433, Crump et al. U.S. Pat. No. 5,503,785, Danforth, et al. U.S. Pat. No. 5,900,207, Batchelder, et al. U.S. Pat. No. 5,764,521, Swanson U.S. Pat. No. 6,004,124, Stuffle et al. U.S. Pat. No. 6,067,480 and Batchelder, et al. U.S. Pat. No. 6,085,957, all of which are assigned to Stratasys, Inc., the assignee of the present invention.
In the Stratasys FDM® three-dimensional modeling machines of the current art, the CAD design of an object is “sliced” into multiple horizontal layers by a software program. The machines then built up the object layer-by-layer by extruding modeling material in fluent strands, termed “roads”. Each extruded road has a thickness equal to the height of a slice. The material being extruded fuses to previously deposited material and solidifies upon a drop in temperature to form a three-dimensional object resembling the CAD model. The modeling material is typically a thermoplastic or wax material. Alternatively, other types of materials, such as metals, which become flowable when heated, which solidify upon a drop in temperature, and which adhere to the previous layer with an adequate bond upon solidification can be employed.
In a an extrusion-based modeling system, modeling material is supplied to the extrusion head as a feedstock of either a liquid or a solid material. Where the feedstock of modeling material is in solid form, a liquifier brings the feedstock to a flowable temperature for deposition. One technique is to supply modeling material in the form of a filament strand. Solid material feedstocks may alternatively be in the form of wafers, rods, slugs, or the like. A pressurization means is used to extrude molten modeling material from the extrusion head.
In modeling systems that employ a filament feed, modeling material is loaded into the machine as a flexible filament wound on a supply spool, such as disclosed in U.S. Pat. No. 5,121,329. The extrusion head, which includes the liquifier and a dispensing nozzle, receives the filament, melts the filament in the liquifier, and extrudes molten modeling material from the nozzle. Typically, the filament has a small diameter, such as on the order of 0.070 inches. A pair of motor-driven feed rollers on the extrusion head controllably advance the filament strand into the liquifier, which is heated so as to melt the filament. The liquifier is pressurized by the “pumping” of the strand of filament into the liquifier by the feed rollers. The strand of filament itself acts as a piston, creating a “liquifier pump”. The pressurization extrudes the molten modeling material out of an orifice of the nozzle at a volumetric flow rate, where it is deposited onto a base. The volumetric flow rate is a function of the size of the dispensing orifice and the rate of rotation of the feed rollers. By selective control of the feed-roller motor, the rate of advancement of the strand of filament, and thus the volumetric dispensing rate of the molten modeling material, can be closely controlled. A controller controls movement of the extrusion head in a horizontal x, y plane, controls movement of the base in a vertical z-direction, and controls the rate at which the feed rollers advance filament into the head. By controlling these processing variables in synchrony, the modeling material is deposited in roads at a desired flow rate, layer-by-layer, in areas defined from the CAD model. The dispensed material fuses and solidifies to form a three-dimensional object resembling the CAD model.
In building a model from a modeling material that thermally solidifies upon a drop in temperature, the modeling base is contained within a temperature-controlled build envelope. The build envelope is preferably a chamber which is heated to a temperature higher than the solidification temperature of the modeling material during deposition, and then gradually cooled to relieve stresses from the material. As disclosed in U.S. Pat. No. 5,866,058, this approach anneals stresses out of the model while is being built so that the finished model is stress free and has very little distortion.
In creating three-dimensional objects by depositing layers of solidifiable material, supporting layers or structures are built underneath overhanging portions or in cavities of objects under construction, which are not supported by the modeling material itself. For example, if the object is a model of the interior of a subterranean cave and the cave prototype is constructed from the floor towards the ceiling, then a stalactite will require a temporary support until the ceiling is completed. A support structure may be built utilizing the same deposition techniques and apparatus by which the modeling material is deposited. The apparatus, under appropriate software control, produces additional geometry acting as a support structure for the overhanging or free-space segments of the object being formed. Support material may be dispensed in a like fashion as the modeling material and in coordination with the dispensing of the modeling material, to build up supporting layers or a support structure for the object. Support material is deposited either from a separate dispensing head within the modeling apparatus, or by the same dispensing head that deposits modeling material. A support material is chosen that will adhere to the modeling material during construction, and that is removable from a completed object. Various combinations of modeling and support materials are known, such as are disclosed in U.S. Pat. No. 5,503,785.
To accommodate the dispensing of two different materials, the above-mentioned '329 patent discloses a dispensing head having multiple supply passages into which materials of different compositions may be directed, with each passage terminating in a separate dispensing orifice. The dispensing orifices of the '329 patent are arranged on a single broad-based nozzle tip, as shown in
FIG. 11
thereof. Experimentation with broad-faced dispensing has tips taught, however, that a broad-faced tip drags against the road being extruded and smears out object features. Object corners are particularly problematic. If a corner does not get out from under a tip face before the tip changes directions, the tip face will drag against the corner. As the outer diameter of the tip face increases, the corner radius will increase as well, so that a narrow deposited road no longer makes fine features.
To overcome the feature smearing problems of multiple orifices, the above-mentioned '785 patent teaches an extrusion head having independent nozzle tips. The apparatus of the '785 patent uses an electromechanical method to move one tip higher or lower than the other, so that only the tip through which material is being extruded will contact the part surface. While the apparatus of the '785 patent eliminates smearing problems,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Extrusion apparatus for three-dimensional modeling does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Extrusion apparatus for three-dimensional modeling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extrusion apparatus for three-dimensional modeling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3353137

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.