Method of skin care and/or treatment using lipoic acid

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S059000, C514S458000

Reexamination Certificate

active

06752999

ABSTRACT:

TECHNICAL FIELD
This invention relates to the topical application of compositions containing lipoic acid for the prevention and/or treatment of damage to skin.
BACKGROUND OF THE INVENTION
Lipoic acid was originally identified as a bacterial growth factor present in the water-soluble fraction of liver and yeast. It was found to be necessary for the oxidative decarboxylation of pyruvic acid by
Streptococcus fecalis
and for the growth of
Tetrahymena gelii
, and replaced acetate for the growth of
Lactobacillus casei
. It has been variously known as acetate replacing factor, protogen A, and pyruvate oxidation factor.
Subsequent research showed that lipoic acid (LA) was a growth factor for many bacteria and protozoa, and it served as a prosthetic group, coenzyme, or substrate in plants, microorganisms, and animal tissues. Elucidation of its structure and function determined that it is a co-factor for &agr;-keto-dehydrogenase complexes, typically bound as lipoamide, that participates in acyl transfer reactions. Its reduced form, dihydrolipoic acid (DHLA), is a potent sulfhydryl reductant. In aqueous systems, both LA and DHLA exhibit antioxidant actions (reviewed by Packer, L., et al.,
Free Rad. Biol. Med.
19: 227-250 (1995); this and subsequent references are expressly incorporated herein by reference). LA has been shown to maintain microsomal protein thiols, protect against hemolysis, and protect against neurological disorders. The protective effect of dietary supplementation of LA against ischemia/reperfusion injury in the Langendorff isolated heart model has also been demonstrated. LA has been suggested for treating systemically, or as adjuvant systemic medication for, liver cirrhosis, atheroschlerosis, diabetes, neurodegenerative diseases, heavy metal poisoning, and Chagas disease (ibid.). It has also been used as an antidote to poisonous mushrooms (ibid., particularly Amanita species,
Merck Index,
11th ed, 1989, entry 9255).
Few references suggest the use of lipoic acid in dermatological compositions. In a 1988 Japanese patent publication (JP 63008315), lipoic acid in cosmetics at concentrations of 0.01% to 1%, preferably 0.05% to 0.5%, or in topical “quasi-drugs” at concentrations of 0.1% to 1.5%, preferably 0.5% to 1.0%, were suggested for inhibiting tyrosinase, and thus melanin formation, to whiten skin.
In 1992, Ulrich, et al., suggested dihydrolipoic acid or its pharmaceutically acceptable salts, but not lipoic acid (column 3, lines 28 to 29), as having analgesic, anti-inflammatory, and cytoprotective effects (U.S. Pat. No. 5,084,481, column 1, lines 26 to 31) for a number of pathological conditions including inflammatory and non-inflammatory disorders of the skin (column 3, lines 3 to 4).
In 1995, Rawlings, et al., disclosed a composition and method for “improving or preventing the appearance of dry, flaky wrinkled, aged, photo-damaged skin and treating skin disorders” (U.S. Pat. No. 5,472,698, column 2, lines 51 to 54) using a synergistic combination of serine and/or N-acetyl serine and a thiol, an “S-ester”, and/or a disulfide (id., lines 28 to 33). Lipoic acid was mentioned as encompassed by the latter ingredient (column 3, lines 29 to 30). However, the patent's terminology was confusing. Thiols and S-esters were disclosed as preferable over disulfides (column 4, lines 1 to 4). Though lipoic acid is a disulfide (as shown in the structure below), it's listed as a thiol in the patent (column 3, lines 29 to 30); perhaps what is referred to as “lipoic acid” is, instead, dihydrolipoic acid. This supposition is reinforced by the fact that a Sigma product was employed in some examples (column 7, line 63). Both oxidized lipoic acid and reduced, i.e., dihydrolipoic acid, are available from that chemical company, so DHLA may have been used. Unfortunately, there is more uncertainty about the effects of DHLA when compared to LA (see Packer, et al., cited above, 231-234). The only illustrations of alternate sulfur-containing ingredients were acylated cysteine derivatives, including glutathione.
More importantly, the focus of the patent was stimulation of sphingolipid synthesis in skin to improve it (see column 1 at lines 21 to 23 and column 2 at lines 12 to 13). The examples reported that assays monitored ceramide production in cultured human keratinocytes and porcine skin. In the studies, lipoic acid had no effect in compositions without serine. On the contrary, in every reported assay, the lipoic acid values were identical to controls; see Tables 2 and 3. And, though increasing concentrations of lipoic in the presence of a constant amount of serine boosted ceramide production at certain levels of serine (Table 7), other thiols worked equally well (Tables 1, 4, 5, 6, 8, and 9). Read as a whole, the reference teaches away from LA as an active ingredient, and suggests DHLA of efficacy only with serine or N-acetyl serine.
A year later, in U.S. Pat. No. 5,569,670 to Weischer, et al., pharmaceutical compositions containing a synergistic combination of &agr;-lipoic acid and/or dihydrolipoic acid with specific enantiomers of these, together with some vitamins, including C and E (column 1, lines 3 to 15), were disclosed as useful, primarily for treating diabetes (see the claims). However, anti-inflammatories (abstract, line 8 and column 2 at line 16) as well as treatments for retroviruses and other pathological conditions were included, with an emphasis on veterinary applications (column 13, lines 42 to 62). In a test model for inflammation (observing rat edema), the R-enantiomer of lipoic acid was superior to lipoic alone or to vitamin E alone (column 3, lines 37 to 40). Suggested administration was oral, parenteral or intravenous (column 7, line 31 to end, et seq.), preferably oral (column 11, line 42), but application to skin and mucous membranes was mentioned (column 12, lines 58 to 60). Antioxidants could be employed in some embodiments (column 16, lines 47 to 55), and the list included ascorbic acid, ascorbyl “palmirate” [sic] and tocopherols. The examples combined lipoic and/or dihydrolipoic acid with tocopherols (Examples 1, 2, 5, and 6) or ascorbic acid (Examples 3, 4, and 7). An ointment was disclosed in Example 6; the others described suppositories, capsules, ampules, and tablets.
Similarly, U.S. Pat. No. 5,693,664 to Wessel, et al., from the same research group, was directed to diabetes treatments, particularly where insulin resistance is observed (column 1, lines 10 to 14 and the claims) by use of the R-enantioner of &agr;-lipoic acid. Again, one enantiomer, not a racemate, was employed (column 6, lines 18 to 19). Indeed, the S-enantiomer decreased the effect of insulin in an experimental study reported (column 3, lines 61 to 65). Suggested adminstration was primarily oral (column 6, lines 61 to 66), though parenteral and intravenous are mentioned (ibid., and column 3, lines 7 to 8).
U.S. Pat. No. 5,728,735 to Ulrich, et al., again from the same group, stressed use of an enantiomer (column 1, lines 28 to 54), particularly the R-enantiomer (see the claims), and not a racemate, for combatting pain and inflammation in a variety of conditions (id., lines 58 to 59; inflammations are listed in column 5, line 64 to column 6, lines 9 and include neurodermatitis and psoriasis). Suggested administrations were oral, intravenous, or infusions (column 3, lines 28 to 30, 51, 62 to 63 and 65), but solutions and emulsions for topical application were mentioned (column 6, lines 29 to 34 and 65 to 68, and column 8, lines 16 to 18). Only tablets and ampules were illustrated. All the reported findings of the group are complicated by the fact that the metabolic effects of the R- and S-enantiomers are now known to be different, as are the enzymes that process the enantiomers in cytosolic and mitrochondrial systems (Haramaki, N., et al.,
Free Rad. Biol. Med.
22: 535-542 (1997)). Moreover, different stereospecific reduction by intact cells and tissues has also been observed (ibid.).
The antioxidant activity of lipoic acid appears to prevent free radical damage to cells

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of skin care and/or treatment using lipoic acid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of skin care and/or treatment using lipoic acid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of skin care and/or treatment using lipoic acid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3349095

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.