Porous non-friable polymer film

Chemistry: molecular biology and microbiology – Carrier-bound or immobilized enzyme or microbial cell;... – Enzyme or microbial cell is immobilized on or in an organic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S411100, C435S182000, C435S395000, C523S201000, C525S902000

Reexamination Certificate

active

06750050

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the production of porous non-friable films from emulsion polymers, porous films formed at ambient temperature and processes of manufacturing films having permanent porosity.
2. Description of the Related Art
It is well known that latex films containing particles that are well ordered prior to the final stage of film formation exhibit the best barrier properties. When latex films are used as binders, the same barrier properties can be a disadvantage where access to reactive or adsorptive sites is required. Therefore, latex films having porous structures or transport pores are desirable would have utility in chemical and biochemical processes, such as those that utilize liquid barrier technology, breathable coatings, supported catalysts, sensor technology, encapsulated biocides, immobilized bacteria technology or immobilized cell technology.
A number of different techniques have been employed to create porous films by deliberate reductions in latex stability prior to film formation and by exceeding critical pigment volume fractions, the latter involves adding excess pigment or filler so that there is enough binder to glue the particles together yet not enough to completely fill interstitial voids, but each technique has serious drawbacks, namely, the inability to control and retain a pore structure in the film.
Compositions derived from an intimate mixture of an aqueous latex of a film forming or coating polymer and the cells of an organism have been disclosed in a European publication, EP 0 288,203 B1. The polymer has sufficient fluidity to undergo at least partial coalescence and a process for the production of an enzyme reaction product, formed by mixing the polymer, bacterial cells and a flocculant, causing the cells and the polymer to agglomerate. One important aspect of the process disclosed is the use of polymer flocculation to produce the porous polymer/bacteria agglomerates. This aspect limits the general utility of the process by requiring a second ingredient be added or some other trigger be used at the point of creating the porous agglomerates. A second aspect of this disclosure is the need to anneal the latex particles at a temperature above the Tg of the polymer. If the operating temperature of the porous agglomerates is at or above room temperature then the latex particle must be annealed substantially above room temperature. If the particles could be annealed at room temperature then the porous agglomerates would quickly lose porosity at room temperature. Another important limitation of the disclosure in EP 0 288,203 B1 is the inability of the porous agglomerates to function at high operating temperatures (T~80° C.), due to continued particle coalescence. Polymers having relatively high Tg (>80° C.) in such a process, however, would require annealing at temperatures well above 80° C. to achieve sufficient fluidity, a condition which would be detrimental to the bacteria or other organisms. The additional requirement of relatively high operating temperatures has become more important as bio-processing technology has focused on thermophilic bacteria, which are capable of surviving at 80° C. for extended periods of time. It is clear that a process for forming smooth, porous films at ambient temperature, which are a capable of withstanding high operating temperatures without the concomitant loss of porosity is highly desirable, yet is not possible given the disclosure of EP 0 288,203 B1.
Another process for preparing porous composite membranes for ultrafiltration and micro-filtration membranes has been disclosed in European publication, EP 0 711,199 B1. The membranes are prepared by depositing discrete, spherical, polymeric particles, obtained by suspension, dispersion or emulsion polymerization on the surface of a porous substrate to obtain the composite and using thermal coalescence of the particles or chemical means to stabilize the resulting composite. A key limitation of the disclosure in EP 0 711,199 B1 is the need to thermally coalesce the latex particles at relatively high temperatures (>120° C.). There are many applications, including bacteria/latex composite films, in which the high annealing temperature is not practical. A number of typical processing and performance limitations associated with this membrane technology, such as the restricted choices of available pore sizes, has been detailed in a publication of Jons, Ries and McDonald in the Journal of Membrane Science, Vol. 155, pages 79-99 (1999). Thus, an enabling process to form porous films comprising latex particles at ambient temperature would indeed have significant utility.
Current aqueous latex polymer technology utilizes the process of latex film formation to afford continuous, non-porous films. In a number of important chemical and biochemical processes, however, polymer films that retain a high degree of porosity so as to allow small molecules to diffuse, relatively unhindered, in and out of the film are of great commercial utility. It is also desirable in such applications that film formation be accomplished at or close to ambient temperature and the resulting porous film not be friable after film formation is complete. A long recognized problem has been to make a permanently porous film from water-borne latex dispersion polymers, such that film formation occurs at ambient temperature and the resulting film once formed is not friable, possesses a high degree of porosity and retains porosity at elevated temperatures for long periods of time. Currently aqueous latex technology either affords films with no porosity, partially coalesced films that are non-uniform and have stability issues, films with high porosity which require elevated temperature for film formation, or films having high porosity which require polymer flocculation to create the porous structure.
SUMMARY OF THE INVENTION
Inventors have discovered a process to create permanent porosity in polymeric films. By employing such a process, inventors have produced porous polymer films at ambient temperatures, polymer films that have a permanent pore structure and polymer films that retain porosity at elevated temperatures. The present invention discloses three aspects to solving the current problem of producing permanently porous polymer films. The first aspect involves blending a non-film forming material in particulate form and film forming latex polymer particles having diameters small enough to fit through the interstices formed from the non-film forming particle matrix. The second aspect involves using a core-shell latex polymer such that the inner core of the polymer particle is a non-film forming polymer and the shell is a film forming polymer particle. The third aspect involves using large dimension, emulsion polymer particles. The present invention also contemplates using blends of all polymer types disclosed in the above mentioned aspects of the invention. The porous polymer films of the present invention provide improved adsorbent performance and the potential for sustained release of reaction products from entrapped organisms or immobilized cells.
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the invention there is provided a porous film comprising a blend of (a) at least one non-film forming material and (b) at least one film forming polymer, the film having a network of pores or channels throughout the film, wherein the film forming polymer is present in the blend from between 5 and 35%, based on the total volume of polymer and the film is non-friable.
According to the second aspect of the invention there is provided a porous film comprising a water-borne latex dispersion of a multi-stage polymer having at least one non-film forming material and at least one film forming polymer, the porous film maintains porosity up to 160° C., wherein the film forming polymer has a Tg no greater than 20° C., the non-film forming material is a polymer having a Tg of at least 30° C., wherein the film forming polymer is pres

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Porous non-friable polymer film does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Porous non-friable polymer film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Porous non-friable polymer film will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3347235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.