Robotic seed-planting apparatus and methods

Plant husbandry – Miscellaneous – Potting or transplanting machine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S737000

Reexamination Certificate

active

06688037

ABSTRACT:

FIELD
The present invention relates to robotic apparatus and methods for automatically removing seeds from donor locations (e.g., containers) and planting the seeds at planting locations (e.g., planting chambers).
BACKGROUND
Many types of horticultural and agricultural operations, both in a research and in a production context, involve manipulations of plant seeds and other units of plant reproductive material. For example, certain operations involve seed sorting, seed weighing, seed planting, and analogous tasks. These tasks are labor-intensive and repetitive.
The scale of modern horticultural operations, as well as other operations involving propagation of plants, is continuing to increase. With large-scale horticultural operations, it is readily appreciated that tasks such as seed manipulation, sorting, weighing, and planting ordinarily require large number of monotonous man-hours for completion. The enormous time and labor costs associated with these tasks can be prohibitive.
Hence, there is a need for automated equipment capable of performing any of various horticulturally related tasks such as seed planting.
SUMMARY
According to one representative embodiment, a robotic apparatus for planting seeds is provided. A robotic assembly of the apparatus is configured to move in three-dimensional space. A seed manipulator is carried by the robotic assembly to be positioned by the robotic assembly at selected locations in the three-dimensional space. The seed manipulator includes a probe having an end surface that is pervious to air. The probe is fluidly connectable to a vacuum source so that application of a vacuum from the vacuum source to the probe is effective to cause the end surface of the probe to pick up at least one seed whenever the end surface of the probe is positioned at a selected first location proximate to the seed. Release of the vacuum from the probe causes the end surface of the probe to release the seed at a selected second location, such as in a planting chamber. To facilitate release of the seed from the end surface of the probe, the probe may be fluidly connected to a pressurized fluid source for selectively introducing a pressurized fluid into the probe.
The apparatus also may include a cover-removal manipulator for removing and replacing a cover on a container containing seeds to be planted. The cover-removal manipulator may be carried by or mounted to the robotic assembly, along with the seed manipulator, to be the positioned by the robotic assembly at selected locations in the three-dimensional space. Alternatively, the cover-removal manipulator and the seed manipulator may be configured for independent motion on their own respective robotic assemblies.
In addition, a seed-alignment container may be provided for use in planting seeds. The seed-alignment container is configured such that seeds, when deposited in the seed-alignment container, form a row of seeds dispersed along a surface of the container. Aligning seeds in this manner allows a seed sample comprising a selected number of seeds (e.g., as few as one seed) to be removed from a larger seed population more easily with the probe than removing a seed sample from a seed population contained in a conventional seed donor jar.
In an illustrated embodiment, the seed manipulator comprises a first probe and a second probe. The first probe desirably has an end surface configured to pick up an undefined number of seeds. The second probe, in contrast, desirably has an end surface configured to pick up a selected number of seeds. The first probe may be used for picking up a seed population at a first location (e.g., from a donor seed container) and depositing the seeds in the seed-alignment container. The second probe may be used for removing a selected number of seeds from the seed population contained the seed-alignment container and planting the seeds in a planting chamber.
An apparatus for planting seeds according to another representative embodiment comprises a first probe having an end surface configured to pick up a plurality of seeds whenever vacuum is applied to the probe and the end surface is positioned proximate the plurality of seeds. A seed-dispersing container may be provided for receiving the plurality of seeds from the first probe and dispersing the seeds along a surface thereof. A second probe may be provided for picking up and planting seeds deposited in the seed-dispersing container. The second probe has an end surface configured to pick up a seed sample comprising a selected number of seeds whenever vacuum is applied to the probe and the end surface is positioned proximate the seeds in the seed-dispersing container.
A vacuum sensor may be provided for sensing and indicating the vacuum in the second probe for use in determining whether the second probe has picked up any seeds. In a disclosed embodiment, a controller is in communication with the vacuum sensor to read the output from the vacuum sensor. If a decrease in vacuum is detected, indicating that a seed sample has been picked up on the end surface of the second probe, the controller automatically moves the second probe to a selected location for planting the seed sample.
According to yet another representative embodiment, an apparatus is provided for removing seeds contained in a donor container and planting the seeds in selected planting cells. The apparatus comprises a seed-removal means for removing seeds from the donor container. A seed-alignment means may be provided for receiving seeds from the seed-removal means and aligning the seeds in a row. A seed-planting means may be provided for removing seeds from the alignment means and planting the seeds in selected planting cells.
The seed-removal means and the seed-planting means may be configured to be movable to selected positions in three-dimensional space for picking up and releasing seeds. In addition, controlling means may be provided for controlling the movement of the seed-removal means and the seed-planting means to selected positions in three-dimensional space.
An apparatus for planting seeds according to another representative embodiment comprises a first probe and a second probe configured to move in three-dimensional space. The first and second probes are fluidly connectable to a vacuum source. The first probe has an air-pervious end surface so that application of a vacuum from the vacuum source to the first probe is effective to cause the end surface to pick up a plurality of seeds at a selected first position. Release of the vacuum from the first probe causes the end surface of the first probe to release the seeds at a selected second position. The second probe has an end surface defining a selected number of apertures. The second probe is operable to pick up a selected number of seeds at the second position, upon application of a vacuum from the vacuum source to the second probe. Release of the vacuum from the second probe causes the end surface of the second probe to release the selected number of seeds at a selected third position for planting the seeds.
In another representative embodiment, an apparatus for planting seeds comprises a probe device having an apertured end surface. The probe device is fluidly connectable to a vacuum source such that, upon application of a vacuum from the vacuum source to the probe device, seeds are picked up on the end surface of the probe device. A vacuum sensing device may be operatively connected to the probe device for sensing the vacuum in the probe device, thereby detecting whether the end surface has picked up any seeds.
A method for planting seeds, according to one embodiment, comprises depositing a plurality of seeds in a seed-alignment trough to form a row of seeds aligned along a surface in the seed-alignment trough. A seed sample, comprising a selected number of seeds, less than the plurality of seeds, is removed from the seed-alignment trough and planted at a selected location. Additional seed samples may be successively removed from the seed-alignment trough and planted at respective, separate locations. In a disclos

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Robotic seed-planting apparatus and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Robotic seed-planting apparatus and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robotic seed-planting apparatus and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3346730

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.