Polyvinyl chloride resins

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S287000, C524S297000, C524S298000, C524S314000, C524S357000, C524S425000, C524S445000, C525S185000, C525S190000

Reexamination Certificate

active

06750278

ABSTRACT:

FIELD OF THE INVENTION
The invention is directed towards novel carbon monoxide containing compositions effective as plasticizers for polyvinyl chloride resins.
BACKGROUND
Polyvinyl chloride (PVC) is a versatile polymer which is used in many applications such as water piping, floor tile, exterior vinyl siding, electrical wire insulation, shower curtains and synthetic leather. Plasticizers are added to PVC to improve flow, and therefore processability, as well as to reduce the brittleness of the product. A plasticizer is a material incorporated in a plastic to increase its workability and its flexibility or distensibility (i.e., elongation). This is achieved by lowering the glass transition temperature (“T
g
”), thereby producing a change in properties from those of a hard, brittle, glasslike solid to those of a soft, flexible, tough material. The vast majority of plasticizers used today are monomeric ester-types. Phthalates such as diisononyl phthalate, diisodecyl phthalate and di(2-ethylhexyl) phthalate (dioctyl phthalate, DOP) are well known and commonly used plasticizers. Further, plasticizers are usually added to PVC on hot rolls or in a hot mixer such as a Banbury. The plasticizer content varies widely depending on the end use of the material; however, typically plasticizer content will be approximately 5 to approximately 50% by weight.
When evaluating which plasticizers should be used for a particular application, the permanence of the plasticizer, in addition to miscibility with the PVC, is crucial. Permanence refers to the stability of plasticizer within the blend. More specifically, plasticizers, especially those with low molecular weights, tend to be migratory in that they tend to move to the surface of the blend where they subsequently evaporate and/or may be removed by soapy water, solvents, oils, etc. These problems are minimized by using high molecular weight polymers. Unfortunately, very high molecular weight polymers may present processing and compatibility problems, cause poor low temperature flexibility, and be costly.
Copolymers of ethylene, carbon monoxide and a termonomer(s), such as vinyl acetate, have been used as plasticizers in blends with PVC to produce flexible films, as well as, rigid and semi-rigid materials. These plasticizers are compatible with PVC, lower the T
g
and possess adequate permanence. However, while these plasticizers have proved to be effective, they are prepared using pure feeds of the individual monomers which can be costly. Hence, there is still a need to investigate other PVC plasticizers which are compatible with PVC and sufficiently lower the PVC resin's T
g
. Additionally, less expensive avenues to produce known plasticizers should also be pursued.
SUMMARY OF INVENTION
The instant invention provides novel polyvinyl chloride compositions having CO-containing polymers which act as plasticizers. These CO-containing polymers are low molecular weight copolymers with low crystallinity. Depending on the particular plasticizer(s) used and the type of PVC, percentage mix, etc., advantages of the instant invention include: lower plasticizer volatility and accompanying lower migration; lower cost than conventional monomeric plasticizers; improved processability and compatibility; and effective lowering of the PVC resin glass transition temperature (“T
g
”).
In one embodiment, the invention is a PVC resin composition comprising polyvinyl chloride and a plasticizer selected from the group consisting of: i) a non-linear, paraffin-soluble olefin-CO copolymer; ii) an olefin-CO-X terpolymer derived from non-pure feeds; ii) a non-linear olefin-CO copolymer derived from non-pure feeds; iv) a non-linear CO-X copolymer; and v) mixtures thereof; wherein X is selected from the group consisting of alpha-olefin, vinyl acetate, neo vinyl ester and mixtures thereof. The composition may further comprise further comprising a compound selected from the group consisting of dialkyl phthalate, dialkyl isophthalate, dialkyl terephthalate, trialkyl trimellitate, tetraalkyl pyromellitate, monoalkhyl benzoate, dialkyl azelate, dialkyl sebacate, dialkyl adipate, and mixtures thereof. The composition may also further comprising a stabilizer or filler selected from the group consisting of calcium, barium, cadmium, zinc, lead, calcium carbonate, clay, and mixtures thereof.
In another embodiment, the invention is a product prepared from the PVC resin according as described above wherein said product is selected from the group consisting of a film, a sheet, an extruded item, a molded item a cast item and mixtures thereof.
In yet another embodiment, the invention is a method for a preparing a PVC resin comprising blending polyvinyl chloride with a plasticizer selected from the group consisting of: i) a non-linear, paraffin-soluble olefin-CO copolymer; ii) an olefin-CO-X terpolymer derived from non-pure feeds; iii) a non-linear olefin-CO copolymer derived from non-pure feeds; iv) a non-linear CO-X copolymer; and v) mixtures thereof; wherein X is selected from the group consisting of alpha-olefin, vinyl acetate, neo vinyl ester and mixtures thereof. This method may further comprise the step of blending a further comprising the step of blending a compound selected from the group consisting of dialkyl phthalate, dialkyl isophthalate, dialkyl terephthalate, trialkyl trimellitate, tetra-alkyl pyromellitate, monoalkhyl benzoate, dialkyl azelate, dialkyl sebacate, dialkyl adipate, and mixtures thereof.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description and appended claims.
DESCRIPTION
The instant invention relates to novel PVC/plasticizer blends and the method of producing such blends based on carbon monoxide (“CO”) containing plasticizers which are formed from non-pure feed streams such as synthesis gas (“syngas”) and multi-component synthesis gas (“MCS”). Pure co-feeds such as vinyl monomers, including olefins, may also be used in conjunction with non-pure feeds to form the plasticizers. These CO-containing polymers are low molecular weight (“MW”) copolymers with low crystallinity. It should be appreciated by those skilled in the art that use of the general term “copolymers” includes terpolymers and other polymers having various combinations of different monomer units. It should also be appreciated that the term “polyvinyl chloride” or “PVC” means homopolymers of vinyl chloride, as well as, copolymers thereof containing up to about 20% of other monomers including, but not limited to, vinyl acetate, propylene, ethylene, butyl vinyl ether, diethyl maleate, dimethyl fumarate, etc. With respect to the terms “non-pure”, “syngas” and “MCS” feedstreams, one skilled in the art would recognize these to be feeds other than “pure feeds” which are typically defined as being at or close to 100%. Non-pure feed streams are further described in U.S. Pat. No. 6,049,011 to Kiss et al. and co-pending U.S. patent application Ser. Nos. 09/233,353 and 09/233,362—all of which are herein incorporated by reference.
The plasticizers of this invention may be synthesized using well known free radical polymerization techniques as described in co-pending U.S. patent application Ser. Nos. 09/233,353 and 09/233,362—both of which are herein incorporated by reference. Because the instant invention employs free-radical polymerization to form its non-linear copolymers, the resulting non-linear copolymers may also be characterized as being non-alternating.
The instant invention provides novel polyvinyl chloride compositions having CO-containing polymers which act as plasticizers. These CO-containing polymers are low molecular weight copolymers with low crystallinity. Depending on the particular plasticizer(s) used and the type of PVC, percentage mix, etc., advantages of the instant invention include: lower plasticizer volatility; lower cost than conventional monomeric plasticizers; improved processability and compatibility; and effective lowering of the PVC resin glass transition temperature (“T
g
”).
The composit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyvinyl chloride resins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyvinyl chloride resins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyvinyl chloride resins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3342797

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.