Percutaneous puncture sealing method

Surgery – Instruments – Sutureless closure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06818008

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to the sealing of surgically produced punctures for different medical procedures and more particularly to the sealing of such punctures using a sealing material ejected into the puncture.
Certain medical procedures require the percutaneous puncturing of the body tissue of a patient to gain access to a cavity in the body to perform the medical procedure. One general example of such procedures is the puncturing the body tissues and the blood vessel wall to gain access to the interior of the vascular system of the patient for the procedure to be conducted. Such procedures that commonly require the percutaneous puncturing of the blood vessel wall are balloon angioplasty procedures, arteriography, venography, angiography and other diagnostic procedures that use blood vessel catheterization. Examples of other procedures using this technique are laparoscopic surgery and other microscopic surgery techniques using a small incision through one or more sections of body tissue to gain access to the body cavity in which the surgical procedure is to take place. In each of these techniques, it is necessary to reclose the incisions or punctures through the body tissue after the surgical procedure. Examples of such prior art techniques are set forth in the following patents:
U.S. Pat. No.
Inventor
Issue Date
Class/Subclass
4,890,612
Kensey
1/1990
623/1X
5,021,059
Kensey et al.
6/1991
606/213
5,053,046
Janese
10/1991 
606/213X
5,108,421
Fowler
4/1992
606/213
5,129,882
Welborn et al.
7/1992
606/213X
5,141,515
Eberbach
8/1992
606/213
5,147,316
Castillenti
9/1992
604/174X
5,290,310
Makower et al.
3/1994
606/213
One of the primary problems associated with the prior art is the inability to insure that the puncture or incision is sealed along its length while at the same time insuring that part of the sealing material does not protrude from the puncture into the body cavity after the puncture has been sealed. This is particularly critical when sealing punctures into blood vessels because any dislodgement of the sealing material from the puncture can cause an embolus while any protruding sealing material from the puncture into the blood vessel can serve to undesirably restrict the blood flow past the site (i.e. thrombosis).
SUMMARY OF THE INVENTION
These and other problems and disadvantages associated with the prior art are overcome by the invention disclosed herein by providing a technique for sealing a percutaneous puncture or opening through the body tissue into a body cavity such as a blood vessel while insuring that the sealing material will be contained within the puncture. The sealing material may be a preformed member or a flowable material which sets up after it is injected into the puncture. The seal may be formed by a blood clot within the puncture or by a sealing material such as a fibrin adhesive which positively bonds the body tissue around the puncture together to seal it.
The method of the invention comprises depositing a biocompatible sealing material such as a biocompatible adhesive along at least that portion of the puncture adjacent the body cavity in a patient while preventing passage of the adhesive out of the end of the puncture into the body cavity, and allowing the adhesive to bond the body tissue around the puncture to close the puncture without passage of the adhesive into the body cavity. The sealing material may be prevented from passing out of the end of the puncture into the body cavity by temporarily closing that end of the puncture through the body of the patient opening into the body cavity while the sealing material is deposited into the puncture. The temporary closing mechanism may be removed through the sealing material after the seal is established. The sealing material may be a single or multiple component fibrin adhesive. To maintain the adhesive in a prepared but uncured condition, it may be maintained in a frozen state or it may be mixed as an incident to the depositing of the adhesive into the puncture. Likewise, where the fibrin is activated by exposure to some condition such as irradiation with ultraviolet light, exposure to heat, or the like, it may be so exposed to such condition just prior to or during installation in the puncture. To insure access through the sealing material to the end of the puncture at the body cavity for the temporary closing mechanism, a central tube may be preinstalled through the sealing material through which the temporary sealing mechanism passes as the sealing material is installed in the puncture. The central tube also allows the collapsed expandable portion of the temporary sealing mechanism to be withdrawn therethrough after the sealing material is installed. A bioabsorbable separator member may also be installed between the leading end of the sealing material and the temporarily closed end of the puncture to insure that none of the sealing material inadvertently passes out of the end of the puncture and into the body cavity. The separator member may also promote sealing of the puncture in addition to the sealing material. The method of the invention is also directed to preparing a fibrin adhesive for use in bonding body tissue comprising the steps of forming the fibrin adhesive into a prescribed shape, and then freezing the fibrin adhesive while in the prescribed shape to maintain the shape. The method may also include mounting the frozen fibrin adhesive on a central tube extending therethrough. Where the central tube is flexible, it may be internally supported while the frozen fibrin is installed thereon.
The apparatus of the invention is directed to an installation system for delivering a sealing material along the length of a percutaneous puncture that opens into a cavity in the body of a patient comprising a delivery assembly sized to be inserted into the puncture and defining a material carrying chamber therein with a discharge opening therefrom through which the sealing material can be discharged. A plunger means is slidably received in the chamber in the delivery assembly for selectively forcing the sealing material in the chamber out of the discharge opening as the plunger means and said delivery assembly are moved relative to each other so that the plunger means can be located at an initial position in the chamber in the delivery assembly with the sealing material in the chamber between the plunger means and the discharge opening while the delivery assembly is inserted into the puncture until the projecting end of the delivery assembly is located in the vicinity of that end of the puncture opening into the body cavity. The delivery assembly may further comprise a sheath member sized to fit in the puncture and defining the assembly projecting leading end thereon and a passage therein opening onto the projecting leading end, and a delivery member sized to fit in the passage in the sheath member and defining the material receiving chamber therein, a projecting discharge end thereon, and an ejection opening from the material carrying chamber through the projecting discharge end from which the sealing material can be discharged. The delivery member can be slidably inserted into the sheath member leading end first to a first position in which the ejection opening is located in the vicinity of the projecting leading end of the sheath member and so that the sealing material can be ejected into the passage in the sheath member as the delivery member is withdrawn along the sheath member while the sheath member is maintained substantially axially fixed in the puncture. The projecting leading end of the delivery assembly may define a temporary holding chamber therein opening onto the projecting end which is sized to receive the preformed separator member therein so that the preformed separator member is substantially flush with the projecting end of the delivery assembly whereby the preformed separator member will be located in the puncture between the sealing material and that end of the puncture opening into the body cavity of the patient. Retaining means ma

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Percutaneous puncture sealing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Percutaneous puncture sealing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Percutaneous puncture sealing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3340052

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.