Telecommunications – Radiotelephone system – Special service
Reexamination Certificate
2000-09-15
2004-06-15
Bost, Dwayne (Department: 2681)
Telecommunications
Radiotelephone system
Special service
C455S041300, C455S422100, C455S448000, C370S338000
Reexamination Certificate
active
06751455
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally concerns wireless communication, including in the home or office.
The present invention particularly concerns power, and bandwidth, management in and for wireless communications systems, most particularly as may be located in the home or office.
The present invention still more particularly concerns power and bandwidth management for wireless communications systems, especially as are used in the home of office, that is adaptive, and tailored to communications conditions.
2. Description of the Prior Art
2.1 Bluetooth and Home RF: Industry Efforts for Wireless Networking
The present invention will be seen to concern power management in and for home and office wireless communications systems. Before specifically considering power management, it is useful to understand just what is the “state of the art” in home and office wireless communications, circa 1999. In this regard, Bluetooth and Home RF are the leading international efforts for wireless networking.
Bluetooth (www.bluetooth.com) is an effort by a consortium of companies to design a universal framework that offers a way to access information based on a diverse set of devices (e.g PDA, mobile PCs, phones, pagers) in a seamless, user-friendly and efficient manner. Bluetooth envisages a functional and connectivity model based on a combination of wireless access technologies—each matched to different device capabilities and requirements.
Another group of companies has formed the Home RF Working Group or Home RF (www.homerf.org), which has created the Shared Wireless Access Protocol (or SWAP).
The present invention will be seen to be a system and a method that can be implemented by use of the Bluetooth, or the HomeRF, standard and protocol, among other standards and protocols. Review of these wireless communications standards is useful primarily so as to show that the wireless communications links realized by the present invention are neither new nor exotic; circa 2000.
2.2 Bluetooth
“Bluetooth” is each of a consortium, a standard, and a (prospective) class of products. The present invention will be seen to be none of these: it is a system and a method that can be implemented by use of the Bluetooth standard and protocol, among other standards and protocols. Review of Bluetooth is useful primarily so as to show that the wireless communications links realized by the present invention are readily implemented, circa 2000.
A few years ago, the telecommunications and computing industries recognized that a truly low-cost, low-power radio based cable replacement, or wireless link, was feasible. Such a ubiquitous link would provide the basis for small portable devices to communicate together in an ad-hoc fashion. A study was performed, and a technology code named “Bluetooth” began to be defined. The goal was to provide effortless service for mobile and business users by means of a small, short range radio-based technology suitably integrated into production line models of a range of different devices.
Five companies—Ericsson, IBM, Intel, Nokia and Toshiba—teamed up in May, 1998, to address the rising tide of information currently received on mobile computers, cell phones and personal digital assistants. The result was the Bluetooth wireless communications initiative.
As of October, 1998, some 200 companies including 3Com, Compaq, Dell, Hewlett-Packard, Lucent, Motorola, NTT DoCoMo, Philips, Samsung, Siemens and Texas Instruments have joined the Bluetooth Special Interest Group (SIG).
Bluetooth technology is intended to enable users to connect their mobile computers, digital cellular phones, hand-held devices, network access points and other mobile devices via wireless short-range radio links unimpeded by line-of-sight restrictions.
Eliminating the need for proprietary cables to connect devices, Bluetooth technology will increase the ease and breadth of wireless connectivity. Users will be able to automatically receive e-mail on their notebook computers via the digital cellular phones in their pockets, or synchronize their primary PC with their hand-held computer without taking it out of their briefcase.
The overwhelming interest in Bluetooth technology from a wide range of industries demonstrates the growing importance of wireless communication, said Andrew M. Seybold, editor-in-chief, Andrew Seybolds Outlook and keynote speaker at the Bluetooth Developers Conference. Mr. Seybold found the Bluetooth SIG to include the right balance of industry leaders who can make the vision a reality.
The Bluetooth specification version 1.0 was publicly released on Jul. 26, 1999, and product announcements are imminent as of Fall, 1999. Early Bluetooth-enabled products are expected to include mobile computers, hand-held PCs, digital cellular phones and peripherals such as printers, projectors, PC Cards and hands-free head-sets. Network access points will also be available to facilitate access to LANs and WANs.
The core Bluetooth programmed wireless transmitter/receiver is expected to permit a free flow of data without bulky cables. The technology, which ultimately may cost as little as $5, is designed to work anywhere, even on airplanes.
Low power consumption—drawing only 0.3 mA in standby mode—enables maximum performance longevity for battery-powered devices. During data transfer the maximum current drain is 30 mA. However, during pauses, or at lower data rates, the drain will be lower.
2.3 The HomeRF Working Group
“HomeRF” is also each of a consortium, a standard, and a (prospective) class of products. As before, the present invention will be seen to be none of these, but only susceptible of implementation under the HomeRF standard. Review of HomeRF is useful primarily so as to again show, as with Bluetooth, that the wireless communications links realized by the present invention are readily implemented, circa 2000.
The HomeRF Working Group (HRFWG) was formed to provide the foundation for a broad range of inter-operable consumer devices by establishing an open industry specification for wireless digital communication. The specification is directed to wireless digital communication between PCs and consumer electronic devices anywhere in and around the home. The HRFWG, which includes the leading companies from the personal computer, consumer electronics, peripherals, communications, software, and semiconductor industries, has developed a specification for wireless communications in the home called the Shared Wireless Access Protocol (SWAP).
To date, the high cost and impracticality of adding new wires have inhibited the widespread adoption of home networking technologies. Wired technologies also do not permit users to roam about with portable devices. In addition, multiple, incompatible communication standards have previously limited acceptance of wireless networks in the home. The HRFWG believes that the open SWAP specification will break through these barriers by (1) enabling inter-operability between many different consumer electronic devices available from a large number of manufacturers, while (2) providing the flexibility and mobility of a wireless solution. This flexibility is important to the success of creating a compelling and complete home network solution.
Since the formation of the HEFWG was announced in March 1998, the total number of member companies has risen to more than 90, and continues to expand quickly. The inclusion of nearly all the leading consumer electronics companies in the working group ensures that consumers will benefit from a wide variety of innovative, inter-operable devices for use in and around the home.
2.3.1 Shared Wireless Access Protocol
The SWAP specification of the HomeRF Working Group (HRFWG) defines a new common interface that supports wireless voice and data networking in the home. Representation from the wide range of member companies, which span diverse industries, ensures that the final specification is complete and robust, and that devices envisioned as part of the home network are inter-operable. The SWAP specification
Afshar Kamran
Bost Dwayne
Fish & Richardson P.C.
The Regents of the University of California
LandOfFree
Power- and bandwidth-adaptive in-home wireless... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power- and bandwidth-adaptive in-home wireless..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power- and bandwidth-adaptive in-home wireless... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3339150