System and method for displaying medical process diagrams

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S485000, C600S500000, C600S504000, C600S526000

Reexamination Certificate

active

06743172

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to display systems. More specifically, this invention relates to systems for displaying graphical information to physicians.
2. Description of the Related Technology
Medical display systems provide information to doctors in a clinical setting. Typical display systems provide data in the form of numbers and one-dimensional signal waveforms that must be assessed, in real time, by the attending physician. Alarms are sometimes included with such systems to warn the physician of an unsafe condition, e.g., a number exceeds a recommended value. In the field of anesthesiology, for example, the anesthesiologist must monitor the patient's condition and at the same time (i) recognize problems, (ii) identify the cause of the problems, and (iii) take corrective action during the administration of the anesthesia. An error in judgment can be fatal.
Approximately 50 percent of the more than 2000 anesthesia-related deaths per year have been found to be due to improper choices during surgery. In general, human error in anesthesia represents failure by the anesthesiologist to recognize a problem (abnormal physiology), identify the cause of the problem and take appropriate corrective action when administering an anesthetic to a patient. Anesthesia performance models, models showing the relationship between errors, incidents and accidents, and models depicting accident evolution in the anesthesia all illustrate the fact that anesthesia is a complex environment prone to errors.
Physiologic data displays of the patient's condition play a central role in allowing anesthesiologists to observe problem states in their patients and deduce the most likely causes of the problem state during surgery. As one might predict, 63 percent of the reported incidents in the Australian Incident Monitoring Study (AIMS) database were considered detectable with standard data monitors. Others have attempted to address these problems, but with only limited success.
For example, Cole, et. al. has developed a set of objects to display the respiratory physiology of intensive care unit (ICU) patients on ventilators. This set of displays integrates information from the patient, the ventilator, rate of breathing, volume of breathing, and percent oxygen inspired. Using information from object displays, ICU physicians made faster and more accurate interpretations of data than when they used alphanumeric displays. Cole published one study that compared how physicians performed data interpretation using tabular data vs. printed graphical data. However, Cole's work did not involve a system for receiving analog data channels and driving a real-time graphical display on a medical monitor.
In addition, Ohmeda, a company that makes anesthesia machines, manufacturers the Modulus CD machine which has an option for displaying data in a graphical way. The display has been referred to as a glyph. Physiologic data is mapped onto the shape of a hexagon. Six data channels generate the six sides of the hexagon. Although this display is graphical, the alphanumeric information of the display predominates. There is no obvious rational for why the physiologic data is assigned a side of the hexagon. Moreover, symmetric changes to the different signs of this geometric shape are very hard for individuals to differentiate.
In the surgical and postoperative settings, decisions regarding the need for blood transfusion normally are guided by hemoglobin (Hb) or hematocrit levels (Hct). Hematocrit is typically defined as the percentage by volume of packed red blood cells following centrifugation of a blood sample. If the hemoglobin level per deciliter of blood in the patient is high, the physician can infer that the patient has sufficient capacity to carry oxygen to the tissue. During an operation this value is often used as a trigger; i.e. if the value falls below a certain point, additional blood is given to the patient. While these parameters provide an indication of the arterial oxygen content of the blood, they provide no information on the total amount of oxygen transported (or “offered”) to the tissues, or on the oxygen content of blood coming from the tissues.
For example, it has been shown that low postoperative hematocrit may be associated with postoperative ischemia in patients with generalized atherosclerosis. Though a number of researchers have attempted to define a critical Hct level, most authorities would agree that an empirical automatic transfusion trigger, whether based on Hb or Hct, should be avoided and that red cell transfusions should be tailored to the individual patient. The transfusion trigger, therefore, should be activated by the patient's own response to anemia rather than any predetermined value.
This is, in part, due to the fact that a number of parameters are important in determining how well the patient's tissues are actually oxygenated. In this regard, the patient's cardiac output is also an important factor in correlating hemoglobin levels with tissue oxygenation states. Cardiac output or CO is defined as the volume of blood ejected by the left ventricle of the heart into the aorta per unit of time (ml/min) and can be measured with thermodilution techniques. For example, if a patient has internal bleeding, the concentration of hemoglobin in the blood might be normal, but the total volume of blood will be low. Accordingly, simply measuring the amount of hemoglobin in the blood without measuring other parameters such as cardiac output is not always sufficient for estimating the actual oxygenation state of the patient.
More specifically the oxygenation status of the tissues is reflected by the oxygen supply/demand relationship of those tissues i.e., the relationship of total oxygen transport (DO
2
) to total oxygen consumption (VO
2
). Hemoglobin is oxygenated to oxyhemoglobin in the pulmonary capillaries and then carried by the cardiac output to the tissues, where the oxygen is consumed. As oxyhemoglobin releases oxygen to the tissues, the partial pressure of oxygen (PO
2
) decreases until sufficient oxygen has been released to meet the oxygen consumption (VO
2
). Although there have been advances in methods of determining the oxygenation status of certain organ beds (e.g., gut tonometry; near infrared spectroscopy) these methods are difficult to apply in the clinical setting. Therefore, the use of parameters that reflect the oxygenation status of the blood coming from the tissues i.e., the partial pressure of oxygen in the mixed venous blood (PvO
2
; also known as the mixed venous blood oxygen tension) or mixed venous blood oxyhemoglobin saturation (SvO
2
) has become a generally accepted practice for evaluating the global oxygenation status of the tissues.
Unfortunately, relatively invasive techniques are necessary to provide more accurate tissue oxygenation levels. In this respect, direct measurement of the oxygenation state of a patient's mixed venous blood during surgery may be made using pulmonary artery catheterization. To fully assess whole body oxygen transport and delivery, one catheter (a flow directed pulmonary artery [PA] catheter) is placed in the patient's pulmonary artery and another in a peripheral artery. Blood samples are then drawn from each catheter to determine the pulmonary artery and arterial blood oxygen levels. As previously discussed, cardiac output may also be determined using the PA catheter. The physician then infers how well the patient's tissue is oxygenated directly from the measured oxygen content of the blood samples.
While these procedures have proven to be relatively accurate, they are also extremely invasive. For example, use of devices such as the Swan-Ganz® thermodilution catheter (Baxter International, Santa Ana, Calif.) can lead to an increased risk of infection, pulmonary artery bleeding, pneumothorax and other complications. Further, because of the risk and cost associated with PA catheters, their use in surgical patients is restricted to high-risk or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for displaying medical process diagrams does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for displaying medical process diagrams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for displaying medical process diagrams will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3336237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.