Apparatus for monitoring intentional or unavoidable layer...

Radiant energy – Photocells; circuits and apparatus – With circuit for evaluating a web – strand – strip – or sheet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S630000

Reexamination Certificate

active

06784445

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to an apparatus for monitoring intentional or unavoidable layer depositions in a process chamber and to a method for carrying out measurements with the apparatus.
In processing operations which are carried out in process chambers and wherein material is removed, which include, for example, the methods of reactive ion etching (RIE) and chemical assisted ion beam etching (CAIBE), a deposit may unintentionally be deposited on account of the starting chemicals used and the resulting reaction products on the inner wall of the reactor wherein the processing operation is carried out. Since the thickness of the deposit continually increases as the process duration increases and, once a specific layer thickness has been reached, the process carried out in the chamber interacts with this deposit to such a great extent that the process can be destabilized, this unavoidable deposit is therefore removed at periodic intervals by carrying out a special cleaning process.
While plasma etching processes or CVD (Chemical Vapor Deposition) processes are performed, polymer layers are deposited on the inside of the process chamber. The layers increase as the operating duration increases, so that after a certain layer thickness has been exceeded, the layer that has grown breaks up and fragments may possibly even drop during operation. As a result, contaminants are produced in the chamber or, if a fragment falls onto the wafer surface, circuits on the processed wafer are rendered unusable. In order to remove these undesirable depositions on the inside of the chamber, the process chamber must occasionally be subjected to wet-chemical cleaning. During the cleaning, the chamber is not available for further production.
In accordance with the prior art, the time for initiating the cleaning process is defined on the basis of empirical values obtained from the determination of the quality of the processed materials. Active monitoring of the state of the chamber wall takes place only in exceptional cases; for example, in the case of a sensor or measurement system for measuring the thickness of the deposit, a measurement principle based on the measurement of thermal capacity is used or the layer thickness is determined by means of ultrasound wave propagation times. Disadvantages of these measurement principles are, for example, the need for additional electrical bushings into the process chamber in order to link the measuring apparatuses to evaluation units. Moreover, the ultrasound wave propagation time method is temperature-sensitive and is made more difficult to carry out as a result of disturbing reflections from the structures within the process chamber.
The Japanese patent application documents JP 63-153269 A, JP 01-132767 A, JP 04-176866 A, JP 05-255850, A and JP 06-49641 disclose arranging a sensor element in the form of a monitor substrate in the region of the layer deposition and detecting the transmission and/or reflection beam emerging from a light source, that is to say the intensity change, by means of a detector and using it to set method parameters. Furthermore, Japanese patent application documents JP 11-140655 A and JP 11-131211 A disclose monitoring the chamber cleaning of a process chamber by means of photosensors, with measurement of the intensity attenuation of a light beam by the layer growing on a window in the chamber wall.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an apparatus and method for monitoring layer deposition processes in a reactor chamber, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and with which the most favorable cleaning cycle times for technological and economic process control can be determined with the lowest possible outlay.
With the foregoing and other objects in view there is provided, in accordance with the invention, an apparatus for monitoring layer depositions in a process chamber, comprising:
a light source;
a sensor element subjectable to deposition and growth of a deposition layer;
a light detector;
the sensor element having a region configured to absorb light to a significantly lesser extent than a remaining part of the sensor element, wherein an intensity of the light is measured in dependence on the region being grown over by a thickness of the deposition layer.
In accordance with an added feature of the invention, the region is a continuous opening formed in the sensor element. The region is configured to influence the intensity of the light beam measured by the detector as the thickness of the layer grows on the sensor element.
In other words, there is provided an apparatus for monitoring layer depositions in a process chamber, comprising a light source, a sensor element, at least one light detector, the sensor element being suitably configured in order to influence the intensity of the light beam measured by the detector by the thickness of the layer growing on the sensor element, and the sensor element having at least one continuous opening and/or at least one region which absorbs the light beam to a significantly lesser extent than the remaining part of the sensor element, through which opening or region the intensity of the light is measured as a function of the opening grown over by the thickness of the growing layer.
In a method for carrying out measurements with such an apparatus, a cleaning cycle time of the process chamber is determined from the intensity measurement of the light by comparing the measured light intensity with a predetermined minimum intensity or a predetermined maximum intensity.
That is, the monitoring method comprises providing an apparatus as outlined above, monitoring a layer deposition in a process chamber with the apparatus, determining a cleaning cycle time of the process chamber from an intensity measurement of the light by comparing the measured light intensity with one of a predetermined minimum intensity and a predetermined maximum intensity.
In the apparatus and the method, in order to determine the thickness of the deposit, the absorption and/or refraction of light at a concomitantly coated opening is determined and evaluated. In this case, the light source may, in principle, be of any desired configuration. Either an external light source or the use of plasma luminous phenomena is preferred as the light source. In this case, external light source does not necessarily mean that it is positioned outside the process chamber, rather it may also be situated inside the process chamber. The method according to the invention is based on the concept of introducing into the process chamber an object as sensor element, on which is deposited largely the same deposit as on the process chamber. The thickness of the deposit, which defines the state of the process chamber and thus the most favorable cleaning cycle time for technological (and economic) process control, can be determined by optical means, such as, for example, by means of light absorption and/or refraction. The method is based on the measurement of the influencing of light, for example by absorption at the sensor element. The component referred to as sensor element is introduced into the process chamber at a location at which it can be expected that a deposit will be formed similar in quality and form to that on the object to be processed/treated, in order preferably to monitor intentionally produced deposits. Specifically, in order preferably to measure unavoidable depositions, it is fitted where it can be expected that there will be a deposit similar in quality and form to that on the chamber wall. In this case, the sensor element is preferably composed of a material which completely absorbs the light used for measurement. The sensor element is preferably composed of silicon. On the sensor element, at least one continuous opening is provided, which may, in principle, be of any desired form, and the light used for measurement is observed through this opening and detected by a detec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for monitoring intentional or unavoidable layer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for monitoring intentional or unavoidable layer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for monitoring intentional or unavoidable layer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.