Method of treating a living organism to achieve a heart load...

Surgery – Cardiac augmentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06832982

ABSTRACT:

The present invention relates to a method of treating a mammal or other living organism having a heart and a peripheral vascular system, in particular a human being to achieve a heart load reduction and a whole variety of other treatments and associated benefits as well as to an apparatus for carrying out the method.
To assist an understanding of the invention it is first necessary to consider the working of the human heart and the known prior art in this field.
The condition of the human heart is frequently measured by means of an electrocardiogram, the typical output trace that is obtained can, for example, be seen from FIG.
1
. An electrocardiogram is basically a record of the sequence of electrical waves generated at each heart beat and the different peaks of the typical electrocardiogram are usually designated by the letters P, Q, R, S and T. The so-called R-R path, i.e. the time between two R peaks represents one cycle of the heart and normally amounts to about 1 second.
Of particular interest is not only the R-R path which corresponds to the frequency of the heart or the pulse rate, but rather also the Q-T path which reproduces the working performance of the heart, called the systole. The remainder of the path equivalent to R-R minus Q-T. i.e. T-Q effectively represents the recovery time of the heart in each heart beat, called the diastole. The operation of the human heart is discussed later in more detail with reference to
FIGS. 1A
,
1
B and
1
C.
Cardiologists frequently refer to the concept of the heart load which is proportional to the heart pulse rate, i.e. the frequency of R-R waves measured in heart beats per minute, multiplied by the systolic blood pressure as measured in millimeters of mercury.
Many treatments have been proposed and used in the prior art which affect the cardiovascular system of human beings. Well known amongst such systems are electrophysiological methods and apparatus which, for example, use electrical stimulation to produce muscle contractions which result in working and training of the muscles. The contractions and elongations caused by electrical stimulation improve the blood flow through the muscles and improve the muscle quality without effort on the part of the patient being treated.
Electrophysiological interactions with living bodies in general, and human beings in particular, can be classified into two main groups, namely asynchronous and cardiosynchronized electrophysiological interactions.
Asynchronous electrophysiological methods and apparatus operate using electrostimulation in which the stimulation is timed in accordance with some externally imposed rhythm, but this timing is not synchronized with the heart pulse rate. Known examples of asynchronous electrophysiological methods and apparatus include:
neurostimulation and neuromuscular and direct muscular stimulation by electrostimulators, with equipment being available from Medicompex SA, Valmed SA, Nemectron GmbH, and EMPI Inc. among others,
the use of electrostimulation for the therapy of pain, with equipment being available from Medtronic Inc. among others,
electrostimulation for active tremor control therapy, for which Medtronic Inc. among others supplies equipment and
electrostimulation for urinary control, again with apparatus being offered by, for example, Medtronic Inc., such as that company's Interstim product.
All the above asynchronous stimulation methods certainly bring benefits to the areas being treated, but result in an increase of the heart load when compared to a normal situation, i.e. without electrostimulation. This heart loading is even known to include an inherent risk of producing arrhythmia or heart problems, when the electrostimulation is applied near the heart on the chest muscle and especially on the left hemithorax.
A useful summary of electrical stimulation therapy is to be found on pages 3 and 4 of the “Users Manual” produced by Valmed SA in relation to their Microstim (registered trade mark), neuromuscular stimulator P
4
Physio Model, issue 11/96.
The other basic category of electrophysiological techniques, namely cardiosynchronized electrophysiological methods and apparatus, comprise methods by which the heart pulse rate is predetermined by means of a sensor and stimulation is delivered in a rhythm at any time within the heart pulse rate and is synchronized with the heart pulse rate.
Such cardiosynchronized methods and apparatus can be subdivided into two classes, namely the simpulsation mode and the counterpulsation mode.
In the simpulsation mode of a cardiosynchronized electrostimulation of muscles the electric impulses are synchronized with the heart pulse rate so that the heart and the stimulated muscle are contracting at the same time, i.e. in systole phase the heart is contracting and the stimulated muscle is contracting. In the diastole phase the heart is relaxing and the muscle is relaxing.
In the counterpulsation mode of a cardiosynchronized electrostimulation of muscles the electric impulses are timed in such a way relative to the heart pulse rate, that the heart and the stimulated muscle are contracting in opposition to each other, i.e. in the systole phase the heart is contracting and the stimulated muscle is relaxing, in the diastole phase the heart is relaxing and the stimulated muscle is contracting.
Known examples of such cardiosynchronized electrophysiological methods/equipment include:
Cardiosynchronized pacemakers, anti-tachycardia pacemakers and defibrillators, which are, for example, again available from Medtronic Inc.,
Cardiomyostimulators, also available from Medtronic Inc.,
Intra-aortal balloon counterpulsation methods and apparatus,
Cardiomyoplasty surgery for heart muscle conglomerates assisted by cardiosynchronized electrostimulation,
External aorta counterpulsation method in which the aorta is bound by a musculo-aponeurotical graft, with its free end bissected to mobilize a sector of the aorta, as disclosed in the patent, SU 1509045 A and in the English language paper by L. V. Lapanashvili, entitled “Automuscolar System of Assisted Circulation for Surgical Correction of Cardiac Failure”, published in “II Cuore”, Rivista di Cardiochurgia e Cardiologia, Vol. IX, n. 1 January/February 1992, pages 5 to 27.
Pacemakers and defibrillators are well known and are inserted into the patient's body by a surgical operation. They also require replacement at regular intervals. This class of device is therefore an invasive surgical technique and indeed stimulates the heart muscles directly and does not act on the peripheral vascular system.
A cardiomyostimulator operates by taking a signal from the heart and using it to stimulate another muscle in synchronism with the heart beat.
The surgical technique used in conjunction with a cardiomyostimulator is referred to as cardiomyoplasty and is, for example, described in the book “Transformed Muscle for Cardiac Assist and Repair” edited by Ray C. J. Chiu, Ivan M. Bourgeois, Bakken Research Center Series, Volume 2, Chapter 21, pages 231 to 233.
The cardiomyoplasty procedure consists of wrapping a skeletal muscle around the heart and stimulating this wrapped around muscle in a manner synchronized with the heart contractions, i.e. in the simpulsation mode, thereby forming a heart muscle conglomerate which assists the heart pumping function. By way of example a cardiomyostimulator supplied by Medtronic Inc., as model SP1005, is a two-channel system consisting of a cardiac pacemaker channel and a myostimulation channel coordinated by a synchronization circuit. The cardiac pacemaker consists of a sensing amplifier, which monitors the intrinsic heart rate and an output stage, which paces the heart as soon as the heart rate drops below a programmed value. A cardiac event can be sensed or initiated by the device, as in a synchronized pacemaker, but furthermore it also triggers the synchronization circuit. The trigger signals are processed through a programmable divider, which allows for different heart/wrapped around muscle contraction ratios within the heart muscle conglomerate. A dela

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of treating a living organism to achieve a heart load... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of treating a living organism to achieve a heart load..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating a living organism to achieve a heart load... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334900

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.