Measuring and testing – Dynamometers – Responsive to multiple loads or load components
Reexamination Certificate
2002-09-05
2004-08-03
Noori, Max (Department: 2855)
Measuring and testing
Dynamometers
Responsive to multiple loads or load components
Reexamination Certificate
active
06769313
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a flexible tactile sensor and tactile sensors for use on the human body.
BACKGROUND OF THE INVENTION
Anisotropic Conductive Elastomer (ACE) is a composite of conductive metal elements in an elastomeric matrix that is normally constructed such that it conducts along one axis only. In general, ACE is made to conduct through its thickness. One form of ACE material is made by mixing magnetic particles with a liquid resin, forming the mix into a continuous sheet, and curing the sheet in the presence of a magnetic field. This results in the particles forming a large number of closely spaced columns through the sheet thickness. The columns are electrically conductive. The resulting structure has the unique property of being both flexible and anisotropically conductive. These properties provide for an enabling interconnection medium which, when combined with other technologies, make it possible to realize new interconnect capabilities.
ACE material can be married with flexible circuits to provide more dynamic range to an ACE interconnect. The flexible circuit consists of an electrically-insulating material such as polyimide, with opposing conductive pads on the surfaces. The pads are vertically interconnected by plated-through holes. Mounting such a flex circuit to ACE material provides more vertical compliance to the ACE material. This allows the ACE material to be used in assemblies that are not flat, such as circuit boards with solder mask, in which the circuit board pads are lower than the top of the solder mask, thus creating a small well around each pad and into which the ACE material-based interconnect must protrude in order to make electrical contact with the pads.
The nerves of the human body provide feedback from the skin to the brain. The majority of the information transmitted through the skin is touch or pressure based information. There are many situations in which this human nerve feedback is impaired or insufficient for a given situation, which can affect a person's abilities in particular situations. The brain receives signals from nerves that are critical to human motor skills, such as movement of the extremities in such basic requirements as walking, and in sensing objects by touch, most commonly with the hands. When this nerve function is impaired or lost, the person's functionality is impaired or lost. For example, the nerves of the human foot continuously provide feedback information to assist in balance and the ability to walk. As the load on the foot is transferred from heel to toe, signals are automatically fed back to the brain for processing and instruction. When a component of the foot such as a toe is lost or impaired, the feedback information provided is lost or reduced, and the ability to walk can be greatly impaired.
There are also situations in which it is desirable to accomplish effective touch sensing or force feedback in other mechanical objects. One parallel application to that described above would be in prosthetics, such as artificial feet, arms or hands. Proper control of prosthetics requires touch sensing and feedback based thereon in order to mimic the body's unimpaired natural functionality.
Still other applications relate to machines. An example is robot arms in which tactile sensing can greatly aid functionality and usefulness.
In all these situations, in order to accomplish tactile sensing it is necessary to have one, or preferably a plurality, of force sensors that are wired to a signal receptor in many applications. Such tactile sensors should be flexible, compact and unobtrusive.
SUMMARY OF THE INVENTION
This invention features an electrical interconnect circuit device comprising an anisotropic conductive elastomer (ACE) material defining two opposing faces and a series of conductive columns extending between the faces. The invention may also use a flexible circuit element defining two opposing faces. One face of the flexible circuit element is in electrical contact with one face of the ACE. The faces of the flexible circuit element may carry one or more electrically-conductive pads. The flexible circuit element further defines a series of conductive pathways extending between its faces. The ACE material and flexible circuit element together provide an interconnect with low inductance.
The ACE material may comprise conductive particles embedded in an elastomer, the conductive particles defining the conductive columns. The flexible circuit element conductive pathways may comprise conductor-lined openings extending between the opposing faces of the flexible circuit element. The flexible circuit element may further define conductive pads on both faces of the flexible circuit element and in electrical contact with a conductive pathway, to provide electrical contact areas on the flexible circuit element, one contact area for interfacing with the ACE material, and the other contact area for interfacing with another electrical device.
It is an object of this invention to provide a flexible tactile sensor.
It is a further object of this invention to provide such a sensor that can be used as a skin-substitute in terms of the skin's touch and force sense capabilities.
It is a further object of this invention to provide such a flexible tactile sensor that can be inserted in a shoe to provide motion feedback information that can be used to assist in balance and the ability to walk.
It is a further object of this invention to provide such a flexible tactile sensor that can be used as the skin of an artificial hand, be it a prosthetic device or a robotic device.
The present invention combines ACE with an array of pressure sensors to generate electrical signals as a function of a distributed load. This combination of ACE and pressure sensors can provide the core of what could be called “smart skin”. This resulting material can serve as the sensor feedback element in prosthetics, remote “hands”, training equipment and numerous other applications.
The subject invention combines ACE with a flexible array of piezoelectric sensors that put out an electrical signal in proportion to the applied force. The ACE provides an interconnection medium between the sensors and an information collecting source. This combination can be implemented in several ways to obtain the desired function. The following includes examples of the invention. Other examples will become obvious to others after learning from this teaching.
One focus of this invention is to describe an electronic inner sole which will create a set of electrical signals in response to the load transfer of the foot as it moves the load from heel to toe.
This invention results from the realization that a flexible tactile sensor can be accomplished by marrying a layer of anisotropic conductive elastomer to a flexible force sensor comprising a distributed array of individual force sensing elements. The ACE accomplishes a flexible electrical interface from the force sensors to an appropriate electrical connector, and along to an electrical device designed to use the generated force signals.
More specifically, this invention features a flexible tactile sensor, comprising a flexible distributed array of force sensors that generate electric signals in response to an applied load, a flexible, electrically-insulating matrix having outer faces, one face against the array of force sensors, and a plurality of spaced electrically conductive pathways through the matrix between its faces, with insulating matrix material between the pathways, to carry the electric signals generated by the force sensors to the other face of the matrix.
The force sensors may comprise piezoelectric elements. The force sensors may be embedded in an elastomeric matrix. The flexible distributed array of force sensors may comprise a 1-3 piezo composite. The conductive pathways may comprise conducting particles.
The flexible tactile sensor may further comprising a flexible circuit element against the other face of the matrix. The flexible circuit element may define a plurality o
Dingman, Esq. Brian M.
Mirick O'Connell DeMallie & Lougee LLP
Noori Max
Paricon Technologies Corporation
LandOfFree
Flexible tactile sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible tactile sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible tactile sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3333888