Method and system for optically sorting and/or manipulating...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121680

Reexamination Certificate

active

06835911

ABSTRACT:

TECHNICAL FIELD
This disclosure relates generally to carbon nanotube technology, and more particularly, but not exclusively, to a method, apparatus, and system for optically sorting and/or manipulating a target class of carbon nanotubes via exploitation of electronic properties correlative to dimensions of the carbon nanotubes.
BACKGROUND INFORMATION
Carbon nanotubes have evoked considerable interest since their discovery in the early 1990s. Potential uses include everything from transistors, digital memory, and miniature electron emitters for displays, to hydrogen gas storage devices for the next generation of environmentally-friendly automobiles.
With mechanical strengths up to 100 times that of steel, carbon nanotubes are structurally seamless cylindrical tubes of graphite sheets. The basic repeating unit of the graphite sheet comprises hexagonal rings of carbon atoms, with a carbon-carbon bond length of about 1.42 Å. Carbon nanotubes may be capped with a fullerene hemisphere, and, depending on the method of synthesis, may comprise multi-walled or single-walled tubes. A single-walled carbon nanotube comprises a tube, the wall of which is only a single atom thick. Multi-walled carbon nanotubes comprise a collection of tubes, stuffed one within another in a nested configuration. A typical single-walled carbon nanotube (“SWNT”) may have a diameter varying from about 1 nanometer (“nm”) to about 5 nm, and a length of up to a few millimeters. Generally, SWNTs are preferred over multi-walled carbon nanotubes for use in applications because they have fewer defects and are therefore stronger and more conductive than multi-walled carbon nanotubes having similar dimensions.
The structural characteristics of carbon nanotubes impart unique physical properties that make nanotubes suitable for a variety of applications. For instance, carbon nanotubes may exhibit electrical characteristics of metals or semiconductors, depending on the degree of chirality or twist of the tube. Different chiral forms of carbon nanotubes are referred to as armchair and zigzag, for example. The electronic properties exhibited by carbon nanotubes are determined in part by the diameter and length of the tube. Utilization of carbon nanotubes having particular electronic properties may be aided by a mechanism for producing or selecting nanotubes of specified dimensions.
Existing carbon nanotube synthesis techniques include arc discharge, gas phase synthesis, laser ablation of carbon, and the chemical vapor deposition of hydrocarbons. The arc discharge method is generally not able to control the diameter or length of carbon nanotubes. Meanwhile, the gas phase synthesis method, while appropriate for mass synthesis of carbon nanotubes, also has difficulty in controlling the diameter and length of the carbon nanotubes produced therefrom. While the laser ablation method, and the chemical vapor deposition method generally yield more uniform carbon nanotube products, no adequate mechanism exists for selectively synthesizing carbon nanotubes of specified dimensions.
Known selection and/or sorting techniques for carbon nanotubes having specified dimensions have also proven problematic. While an atomic force microscope or scanning tunneling microscope may be used to select and/or precisely measure the geometry of individual nanotubes, sorting large numbers of nanotubes via these instruments may be both time consuming and cumbersome. As applications for carbon nanotubes become more sophisticated, mechanisms for selectively manipulating carbon nanotubes of specified dimensions become an increasingly integral element of device construction.


REFERENCES:
patent: 6203864 (2001-03-01), Zhang et al.
patent: 6331690 (2001-12-01), Yudasaka et al.
patent: 6333016 (2001-12-01), Resasco et al.
patent: 6350488 (2002-02-01), Lee et al.
Tang, X.-P. et al.; Electronic Structures of Single-Walled Carbon Nanotubes Determined by NMR; Science, Apr. 2000 pp. 492-494 vol. 288.
Andrews, R. et al.; Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization; Chemical Physics Letters, 303 (1999) 467-474.
Kuhr, Stefan et al.; Deterministic Delivery of a Single Atom; Science, Jul. 2001, pp. 278-280, vol. 293.
Wildöer, Jeroen W. G. et al.; Electronic Structure of Atomically Resoved Carbon Nanotubes; Nature, Jan. 1998, pp. 59-62, vol. 391.
Journet, C. et al.; Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique; Nature, Aug. 1997, pp. 756-758, vol. 388.
Venema, Liesbeth C. et al.; Imaging Electron Wave Functions of Quanitzed Energy Levels in Carbon Nanotubes; Science, Jan. 1999, pp. 52-55, vol. 283.
Han, H.X. et al.; Photoluminescence Study of Carbon Nanotubes; Los Alamos Physics Preprints: cond-mat/0004035, Apr. 2000, 6 Pgs.
Rochefort, Alain et al.; The Effects of Finite Length on the Electronic Structure of Carbon Nanotubes; Los Alamos Physics Preprints: cond-mat/9808271, Aug. 1998, 18 Pgs.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for optically sorting and/or manipulating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for optically sorting and/or manipulating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for optically sorting and/or manipulating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332936

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.