Electric lamp and discharge devices – With gas or vapor – Three or more electrode discharge device
Reexamination Certificate
2002-02-25
2004-08-31
Glick, Edward J. (Department: 2882)
Electric lamp and discharge devices
With gas or vapor
Three or more electrode discharge device
C313S292000, C313S238000, C315S169400
Reexamination Certificate
active
06784617
ABSTRACT:
CLAIM OF PRIORITY
This application makes references to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application for SUBSTRATE AND PDP UTILIZING THE SAME earlier filed in the Korean Industrial Property Office on Mar. 13, 2001, and there duly assigned Serial No. 12890/2001 by that Office.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a plasma display panel (PDP), and more particularly, to a substrate having improved partitions to prevent crosstalk between pixels and improved arrangement of phosphor patterns, and a PDP utilizing the same.
2. Description of the Related Art
A plasma display panel (PDP) generates light by exciting fluorescent materials or special discharge gases to form an image using the light. The plasma display panels are largely classified into an alternating current (AC) type, a direct current (DC) type, and a hybrid type.
The conventional AC type PDP includes a transparent front substrate sealed with a rear substrate to form a discharge space, electrodes formed on at least one side of the rear substrate and the front substrate to cause a plasma discharge in the discharge space, and partitions disposed in the discharge space to partition the discharge space and prevent crosstalk between pixels. In the above-described PDP, however, phosphors emitting red light (R), green light (G) and blue light (B), coated in the discharge space partitioned by the partitions, cause a severe difference in luminous efficiency between the respective colors. For example, the luminous efficiency ratio of the R, G and B phosphors is 3:6:1. That is, the luminous efficiency of the B phosphors is very low. To solve this problem, attempts to control a white balance or the coating area of fluorescent materials are being made through adjustment of the magnitude of an image signal. Since the magnitudes of R and G signals are more reduced as compared with a B signal, the display of gray scales of an image may not be properly performed. Also, adjustment of the coating area only exhibits a negligible effect of increasing the luminous efficiency, and causes a smaller discharge margin due to a change in the voltage between discharge cells caused by a change in the gap between electrodes.
Partition walls of a plasma display panel are disclosed in U.S. Pat. No. 5,967,872 issued to Betsui et al. for Method for Fabrication of a Plasma Display Panel, which claims priority from Japanese Laid-open Publication No. hei 09-50768. The separator walls have a zigzag, snaking or meandering shape to form channels having relatively wide discharge cells and relatively narrow connecting portions. According to the PDP having the above-described configuration, while the luminous efficiency can be improved, the white balance characteristics are not improved, which will now be described in more detail.
A white balance refers to a condition in which a constant color temperature characteristic is maintained in the periods of 0-255 gray scales irrespective of gray scales. In a PDP, it is quite difficult to maintain a constant color temperature characteristic irrespective of gray scales. Generally, a high color temperature characteristic is exhibited in lower gray scales, and gradually decreasing color temperature characteristics are exhibited in higher gray scales. It is the luminous efficiency ratio of R and G phosphors that is one of factors most sensitive to color temperature characteristic.
In the conventional PDP, it is often the case that the luminous efficiency of the G phosphor is increased to enhance the brightness of the PDP. However, this enhancement also causes the color temperature characteristic to be deteriorated. In the zigzag, snaking separator walls of U.S. Pat. No. 5,967,872 issued to Betsui et al., the light-emitting area of a discharge cell is so large as to increase the luminous efficiency of a phosphor, exerting a luminance increasing effect. According to this structure, since the sizes of discharge cells coated with R, G and B phosphors are the same, the luminous efficiency ratio of R, G and B phosphors is not so different from that of a conventional striped discharge cell structure. Thus, improvement in color temperature characteristic cannot be attained in every period of 0 to 255 gray scales.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a plasma display panel to both improve the luminous efficiency of a blue (B) phosphor, the luminous efficiency of which is relatively low in a defined discharge space, and to improve a white balance characteristic.
It is another object to improve the color temperature of a plasma display panel along with the luminous efficiency and the white balance characteristics.
It is yet another object to prevent a decrease in the opening ratio of the third main discharge spaces since common electrodes and sustaining electrodes are arranged at a boundary between first and second main discharge spaces and a third main discharge space.
It is still another object to have a plasma display panel that is easier and less expensive to manufacture.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
To accomplish the above and other objects, a plasma display panel according to an embodiment of the present invention includes a substrate, a dielectric layer formed on a top surface of the substrate, partitions spaced a predetermined distance apart from each other and formed in a snaking or meandering shape to form a plurality of channels having main discharge spaces and auxiliary discharge spaces alternately arranged and connected to each other to form channels and red (R), green (G) and blue (B) phosphors coated on the main discharge spaces in a triangular shape with the G and R phosphors aligned with each other in a horizontal direction.
According to another aspect of the present invention, the partitions include first partition portions forming main discharge spaces, second partition portions forming auxiliary discharge spaces, and third partition portions connecting the first and second partition portions, and thicknesses of the first partition portions forming the main discharge spaces where the R and G phosphors are coated are greater than those of the first partition portions forming the main discharge spaces where the B phosphor is coated.
According to another embodiment of the present invention, a plasma display panel includes a substrate, a dielectric layer formed on a top surface of the substrate, first partitions disposed in a striped pattern, spaced a predetermined distance apart from each other on the top surface of the dielectric layer and having recessed portions at opposite sides, and second partitions spaced a predetermined distance apart from each other in a snaking shape, forming main discharge spaces in cooperation with the recessed portions and forming auxiliary discharge spaces in cooperation with lateral surfaces of the first partitions adjacent to the recessed portions.
According to another aspect of the present invention, red (R) and green (G) phosphors are coated in main discharge spaces formed by the first and second partitions, and a blue (B) phosphor is coated in the main discharge spaces formed by the adjacent second partitions. According to yet another embodiment of the present invention, a plasma display panel includes a substrate, data electrodes formed on the top surface of the substrate in a predetermined pattern, a first dielectric layer formed on the surface of the substrate to cover the data electrodes, first partitions having a striped pattern spaced a predetermined distance apart from each other on a top surface of the first dielectric layer and having recessed portions at opposite sides, second partitions spaced a predetermined distance apart from each other in a snaking shape, forming main discharge spaces in cooperation with the recessed portions and formin
Jeong Jae-Seok
Kang Tae-Kyoung
Bushnell , Esq. Robert E.
Glick Edward J.
Keaney Elizabeth
Samsung SDI Co., LTD
LandOfFree
Substrate and plasma display panel utilizing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substrate and plasma display panel utilizing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate and plasma display panel utilizing the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328207