Reaction chamber roll pump

Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S091000, C422S105000, C422S105000, C436S174000, C436S180000

Reexamination Certificate

active

06746649

ABSTRACT:

TECHNICAL FIELD
The present invention relates to small reaction chambers, such as a reaction chamber including a microarray within a microarray strip, and, in particular, to a method and system for circulating solutions within small sealed reaction chambers.
BACKGROUND OF THE INVENTION
Microarrays are widely used and increasingly important tools for rapid hybridization analysis of sample solutions against hundreds or thousands of precisely ordered and positioned features on the active surfaces of microarrays that contain different types of molecules. Microarrays are normally prepared by synthesizing or attaching a large number of molecular species to a chemically prepared substrate such as silicone, glass, or plastic. Each feature, or element, on the active surface of the microarray is defined to be a small, regularly-shaped region on the surface of the substrate. The features are arranged in a regular pattern. Each feature may contain a different molecular species, and the molecular species within a given feature may differ from the molecular species within the remaining features of the microarray. In one type of hybridization experiment, a sample solution containing radioactively, fluorescently, or chemoluminescently labeled molecules is applied to the active surface of the microarray. Certain of the labeled molecules in the sample solution may specifically bind to, or hybridize with, one or more of the different molecular species in one or more features of the microarray. Following hybridization, the sample solution is removed by washing the surface of the microarray with a buffer solution, and the microarray is then analyzed by radiometric or optical methods to determine to which specific features of the microarray the labeled molecules are bound. Thus, in a single experiment, a solution of labeled molecules can be screened for binding to hundreds or thousands of different molecular species that together compose the microarray. Microarrays commonly contain oligonucleotides or complementary deoxyribonucleic molecules to which labeled deoxyribonucleic acid and ribonucleic acid molecules bind via sequence-specific hybridization.
Generally, radiometric or optical analysis of the microarray produces a scanned image consisting of a two-dimensional matrix, or grid, of pixels, each pixel having one or more intensity values corresponding to one or more signals. Scanned images are commonly produced electronically by optical or radiometric scanners and the resulting two-dimensional matrix of pixels is stored in computer memory or on a non-volatile storage device. Alternatively, analog methods of analysis, such as photography, can be used to produce continuous images of a microarray that can be then digitized by a scanning device and stored in computer memory or in a computer storage device.
Microarrays are often prepared on 1-inch by 3-inch glass substrates, not coincidentally having dimensions of common glass microscope slides. Commercial microarrays are often prepared on smaller substrates that are embedded in plastic housings.
FIG. 1
shows a common, currently available commercial microarray packaged within a plastic housing. The microarray substrate
101
is embedded within the large, rather bulky plastic housing
102
to form an upper transparent cover over an aperture
103
within the plastic housing
102
. The features that together compose the microarray are arranged on the inner, or downward surface of the substrate
101
, and are thus exposed to a chamber within the plastic housing
102
comprising the microarray substrate
101
and the sides of the aperture
104
-
107
. A transparent bottom cover may be embedded in the lower surface of the plastic housing to seal the chamber in order to create a small reaction vessel into which sample solutions may be introduced for hybridization with molecular species bound to the substrate of the microarray. Thus, the plastic housing serves to package the microarray and protect the microarray from contamination and mechanical damage during handling and storage and may also serve as a reaction chamber in which sample solutions are introduced for hybridization with features of the microarray. The plastic housing may further serve as a support for the microarray during optical or radiometric scanning of the microarray following exposure of the microarray to sample solutions. Scanning may, in certain cases, be carried out through the substrate of the microarray without a need to remove the microarray from the plastic housing.
Although currently commonly used and widely commercially available, the plastic microarray packaging shown in
FIG. 1
has a number of disadvantages. First, it is necessary to seal the substrate of the microarray within the plastic housing to prevent exchange of liquids and vapors between the external environment and the reaction chamber formed by the substrate of the microarray, the plastic housing, and a bottom cover. Microarray substrates are commonly made from glass. Thus, a tight seal between the glass microarray substrate and the plastic housing is required. Unfortunately, many sealants used to seal glass to plastic may contain unreactive monomer or produce reactive surfaces that interfere chemically within the hybridization processes that need to be carried out within the reaction vessel. A second disadvantage is that glass and plastic exhibit different thermal expansion behaviors, creating high stress that may lead to glass-to-plastic bond failures during exposure of the plastic microarray packaging and embedded microarray to thermal fluctuations. A third disadvantage of the plastic packaging shown in
FIG. 1
is that the plastic packaging is generally insufficiently mechanically stable to allow for reliable automated positioning of the microarray within a scanning device. As a result, scanning devices need an auto-focusing feature or other additional electromechanical systems for positioning the microarray within the scanning device. A fourth disadvantage of the plastic packaging shown in
FIG. 1
is that, when the embedded microarray is scanned without removing the microarray from the plastic packaging, the thickness of the microarray substrate or of the lower transparent cover, depending from which side of the package the microarray is scanned, must have a relatively precise and uniform thickness so that the microarray substrate or bottom cover is not a source of uncontrolled error during the scanning process. Manufacturing either the microarray substrate or bottom cover to the required precision and uniformity adds to the cost of the microarray/plastic housing module. In general, fully automated manufacture of the plastic housing and embedded microarray is both complex and difficult. A final disadvantage of the plastic packaging for the microarray shown in
FIG. 1
is that the microarray/plastic housing module is primarily designed for individual handling, and lacks features that would facilitate automated positioning, hybridization, and scanning of the microarray/plastic housing modules.
In order to address the above described deficiencies of the commonly used plastic microarray housing shown in
FIG. 1
, microarray strips have been developed. A microarray strip is a linear sequence of regularly-spaced, tightly sealed reaction chambers that each contains a precisely positioned and oriented microarray. The microarray strip further includes tractor feed perforations or other regularly spaced mechanical or optical features that allow the microarray strip, and the microarray contained within the microarray strip, to be mechanically translated and precisely positioned within various automated electromechanical systems. A microarray strip may also serve as a sequence of economical and reliable storage chambers and as packaging for storing, handling, and transporting microarrays contained within the microarray strip. The microarray strip may be rolled onto drums for compact and reliable storage of microarrays.
FIG. 2
shows a microarray strip. The microarray strip
200
comprises a pocket strip
202
and cover s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reaction chamber roll pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reaction chamber roll pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reaction chamber roll pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3327880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.