Semiconductor laser device and method for suppressing fabry...

Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – With reflector – opaque mask – or optical element integral...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S013000, C257S024000, C257S103000, C438S029000, C438S032000, C438S039000, C438S046000

Reexamination Certificate

active

06750478

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to semiconductor laser device, and in particular to a semiconductor laser device used as a pumping source for an optical amplifier.
BACKGROUND OF THE INVENTION
With the proliferation of multimedia features on the Internet in the recent years, there has arisen a demand for larger data transmission capacity for optical communication systems. Conventional optical communication systems transmitted data on a single optical fiber at a single wavelength of 1310 nm or 1550 nm, which have reduced light absorption properties for optical fibers. However, in order to increase the data transmission capacity of such single fiber systems, it was necessary to increase the number of optical fibers laid on a transmission route, which resulted in an undesirable increase in costs.
In view of this, there has recently been developed wavelength division multiplexing (WDM) optical communications systems such as the dense wavelength division multiplexing (DWDM) system wherein a plurality of optical signals of different wavelengths can be transmitted simultaneously through a single optical fiber. These systems generally use an Erbium Doped Fiber Amplifier (EDFA) to amplify the data light signals as required for long transmission distances. WDM systems using EDFA initially operated in the 1550 nm band which is the operating band of the Erbium Doped Fiber Amplifier and the band at which gain flattening can be easily achieved. While use of WDM communication systems using the EDFA has recently expanded to the small gain coefficient band of 1580 nm, there has nevertheless been an increasing interest in an optical amplifier that operates outside the EDFA band because the low loss band of an optical fiber is wider than a band that can be amplified by the EDFA; a Raman amplifier is one such optical amplifier.
In a Raman amplifier system, a strong pumping light beam is pumped into an optical transmission line carrying an optical data signal. As is known to one of ordinary skill in the art, a Raman scattering effect causes a gain for optical signals having a frequency approximately 13TH smaller than the frequency of the pumping beam. The pumping wavelength is approximately 100 nm shorter than the signal wavelength, which is typically in the vicinity of 1500 nm. Where the data signal on the optical transmission line has this longer wavelength, the data signal is amplified. Thus, unlike an EDFA where a gain wavelength band is determined by the energy level of an Erbium ion, a Raman amplifier has a gain wavelength band that is determined by a wavelength of the pumping beam and, therefore, can amplify an arbitrary wavelength band by selecting a pumping light wavelength. Consequently, light signals within the entire low loss band of an optical fiber can be amplified with the WDM communication system using the Raman amplifier and the number of channels of signal light beams can be increased as compared with the communication system using the EDFA.
For the EDFA and Raman amplifiers, it is desirable to have a high output laser device as a pumping source. This is particularly important for the Raman amplifier, which amplifies signals over a wide wavelength band, but has relatively small gain. Such high output is generally provided by a pumping source having multiple longitudinal modes of operation. The Furukawa Electric Co., Ltd. has recently developed an integrated diffraction grating device that provides a high output multiple mode laser beam suitable for use as a pumping source in a Raman amplification system. An integrated diffraction grating device, as opposed to a fiber brag grating device, includes the diffraction grating formed within the semiconductor laser device itself. Examples of multiple mode oscillation integrated diffraction grating devices are disclosed in U.S. patent application Ser. No. 09/832,885 filed Apr. 12, 2001, Ser. No. 09/983,175 filed on Oct. 23, 2001, and Ser. No. 09/983,249 filed on Oct. 23, 2001, assigned to The Furukawa Electric Co., Ltd. and the entire contents of these applications are incorporated herein by reference.
As disclosed in the Ser. No. 09/832,885, 09/983,175, and 09/983,249 patent applications, a multiple longitudinal mode laser device having an integrated diffraction grating preferably has a low reflectivity at the light emitting facet of the laser device. As recognized by the present inventors, this low reflectivity of the light emitting facet of the laser device suppresses the Fabry-Perot oscillation of the device, thereby eliminating kinks in the current to light output (I-L) curve of the device and enhancing high output power operation. Such a low reflectivity is generally provided by an antireflective coating on the cleaved facet of the laser device. However, the present inventors have recognized that such antireflective coatings are difficult to produce due to limitations in thickness control of the coating process. Moreover, the present inventors have recognized that antireflective coating techniques are limited for producing very low reflectivity over the wide wavelength band.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a laser device and method for providing a light source suitable for use as a pumping light source in a Raman amplification system, but which overcomes the above described problems.
Another object of the present invention is to provide a laser device having suppressed Fabry-Perot oscillations.
Yet another object of the present invention is to provide a laser device having a laser facet with a low reflectivity.
According to a first aspect of the present invention, a semiconductor device and method for providing a light source suitable for use as a pumping light source in a Raman amplification system are provided. The device upon which the method is based includes an active layer configured to radiate light, a light reflecting facet positioned on a first side of the active layer, and a light emitting facet positioned on a second side of the active layer thereby forming a resonator between the light reflecting facet and the light emitting facet. A diffraction grating is positioned within the resonator along the length of the active layer and the laser device is configured to output a multiple mode laser beam. At least one of the light reflecting and light emitting facets is vertically offset by an offset angle with respect to the light emitting direction of the laser device.
Either the light emitting facet or the light reflecting facet, or both the light emitting and light reflecting facets may be vertically offset to suppress Fabry-Perot oscillations. The light emitting facet and the light reflecting facet may be vertically offset by an offset angle 3° or more with respect to the light emitting direction. The light emitting facet and the light reflecting facet are preferably vertically offset such that an effective reflectivity Reff of the respective facet is less than 0.1%. Moreover, the light reflecting facet and/or the light emitting facet may include a reflectance coating.
According to another aspect of the invention, a semiconductor laser module, an optical amplifier, a Raman amplifier, or a wavelength division multiplexing system may be provided with a semiconductor laser device having an active layer configured to radiate light, a light reflecting facet positioned on a first side of the active layer, and a light emitting facet positioned on a second side of the active layer thereby forming a resonator between the light reflecting facet and the light emitting facet. A diffraction grating is positioned within the resonator along the length of the active layer. At least one of the light reflecting and light emitting facets is vertically offset by an offset angle with respect to the light emitting direction of the laser device so as to reduce the effective reflectivity of the facet and suppress Fabry-Perot oscillations.


REFERENCES:
patent: 5373173 (1994-12-01), Ohata et al.
patent: 5668048 (1997-09-01), Kondo et al.
patent: 5783845 (1998-07-01

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor laser device and method for suppressing fabry... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor laser device and method for suppressing fabry..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor laser device and method for suppressing fabry... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3327298

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.