Heating apparatus and heating method

Electric heating – Heating devices – Combined with container – enclosure – or support for material...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S448140, C219S443100, C219S468100, C219S504000, C219S390000, C392S416000, C392S418000

Reexamination Certificate

active

06753508

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2001-157030, filed May 25, 2001, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus and method for heating a substrate.
2. Description of the Related Art
In a photolithographic step for a semiconductor device, various types of heating processes are performed including prebaking for vaporizing a solvent from a resist solution applied to a semiconductor wafer and post-exposure baking (PEB) for improving the sensitivity of a chemically amplified resist film after light exposure.
Such a heating process is performed by mounting a wafer on a hot plate of a heating apparatus, so that thermal energy is directly transferred from the hot plate to the wafer while the hot air in the process chamber is removed by an exhaust cover. As a conventional hot plate, a thick ceramic plate of disk-like form is used (which is manufactured by sintering powders such as silicon carbide or aluminum nitride to form a single piece). A resistance heater is embedded in the hot plate for heating the wafer to a predetermined target temperature. In the baking process of general photolithography, a wafer is heated to within the range of about 100 to 200° C.
However, recently, a baking process for heating a wafer to a further higher temperature range has come into use with diversification of manufacturing processes for semiconductor devices. In such a baking process, a wafer is heated to, for example, about 700° C. However, if a conventional hot plate is baked in such a high-temperature baking process, the hot plate becomes warped. More specifically, both ends of the plate become warped as shown in FIG.
15
. When a conventional hot plate was experimentally heated to 700° C., it was confirmed that the hot plate cannot withstand the warping and sometimes breaks. In addition, when a wafer is loaded into or unloaded from a heating process chamber, ambient air flows into the heating process chamber to change the inner temperature thereof by about 100° C. Since heating and cooling are repeated, the hot plate repeatedly expands and contracts, so that the quality of the hot plate deteriorates in a short time.
When the hot plate distorts, the heat is transferred non-uniformly from the hot plate to the wafer, with the result that the wafer is non-uniformly heated. The wafer becomes wavy and distorted like a saddle-back, as shown in FIG.
16
. Such a distortion is undesirable since it decreases dimensional accuracy and the yield of a semiconductor device. In particular, these days, the size of wafers has been increased in order to improve productivity, etc. In view of this tendency, the distortion of wafers becomes a serious problem. It is therefore desired to decrease the distortion of wafers.
The hot plate to be used in the heating process is desirably thin in view of heat response (quickly heating and cooling). Nevertheless, the thickness of the hot plate has not actually been reduced because a minimum strength is required to prevent breakage of the hot plate as mentioned above. Particularly, in the case where the heating process is performed at a higher temperature, it is difficult to reduce the thickness of the hot plate.
BRIEF SUMMARY OF THE INVENTION
An object of the present invention is to provide a heating apparatus and method using a thinner hot plate for heating a substrate while preventing a crack of the hot plate by suppressing the distortion of the hot plate.
According to the present invention, there is provided a heating apparatus for heating a substrate to be processed by photolithography, comprising
a central hot plate having a heat-generating surface which faces a center portion of a lower surface of the substrate and heating the center portion of the substrate;
a plurality of segment hot plates provided so as to surround a periphery of the central hot plate in a plan view, having a heat generating surface facing a peripheral portion of the lower surface of the substrate and heating a periphery of the substrate;
a hot plate support member supporting the central hot plate and the segment hot plates;
a substrate support member supporting the substrate so as to face the central hot plate and the segment hot plates in a close proximity without being in contact with the central hot plate and the segment hot plates; and
a power supply for supplying electricity to the central hot plate and each of the segment hot plates.
According to the present invention, there is provided a method of heating a substrate to be processed by photolithography, comprising:
(a) preparing a central hot plate having a heat-generating surface which faces a center portion of a lower surface of the substrate and a plurality of segment hot plates each having a heat-generating surface which faces a peripheral portion of the lower surface of the substrate;
(b) arranging the plurality of segment hot plates around the central hot plate; forming an annular clearance between the segment hot plates and the central hot plate, inserting a plurality of support pins into the annular clearance from the bottom and allowing the support pins to protrude upward, supporting the substrate by the support pins without being in contact with the segment hot plates and the central hot plate; and
(c) heating the center portion of the lower surface by the central hot plate, heating the peripheral portion of the substrate by the plurality of segment hot plates, thereby heating the entire substrate to a predetermined target temperature.
By combining a plurality of segment hot plates with the central hot plate as mentioned above, each of the hot plates is reduced in size. As a result, the distortion of the entire hot plate assembly is greatly reduced to maintain it flat. Since the distortion of the hot plate itself is suppressed, the thickness of the hot plate can be reduced. When the hot plate thus reduced in thickness is used, high heat response (quickly heating and cooling) of the hot plate is improved. It is therefore possible to quickly increase or decrease the temperature of the hot plate.
Furthermore, since the structures of the segment hot plates and the central hot plate are simplified, the manufacturing process of the hot plate becomes simple, reducing the manufacturing cost. Furthermore, the performances of the segment hot plates and the central hot plate can be independently evaluated. In the case, if a defective plate is included in the hot plate assembly, it is sufficient to discard only the defective plate. The yield is therefore improved. In the event where the hot plate assembly becomes out of order during use, it is not necessary to discard the entire hot plate assembly but necessary to replace only a broken part with a new one. For this reason, the maintenance cost is greatly reduced.
The central hot plate preferably has a circular from in a plan view. The segment hot plates are formed by dividing a ring-form peripheral portion surrounding the central hot plate into four regions and preferably has a fan-shape in a plan view. Note that it is most preferable that the form of the central hot plate should be a perfect circle in a plan view. However, the central hot plate may be a polygon such as a right hexagon, right octagon, right decagon, and right dodecagon. The shape of the segment hot plate in a plan view is most preferably a fan-shape, however, a trapezoid may be acceptable.
Furthermore, it is preferable to have a temperature control unit for controlling the amount of heat generated from each of the segment hot plates by controlling the amount of electricity to be supplied from a power supply to each of the segment hot plates. By controlling the heating operation of each segment hot plate in this manner, it is possible to minutely control the temperature of the substrate peripheral portion to significantly reduce the heat distortion amount of the substrate peripheral portion.
It

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heating apparatus and heating method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heating apparatus and heating method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heating apparatus and heating method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3326121

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.