Static information storage and retrieval – Magnetic shift registers
Reexamination Certificate
2003-06-10
2004-12-21
Nguyen, Tan T. (Department: 2818)
Static information storage and retrieval
Magnetic shift registers
C365S083000
Reexamination Certificate
active
06834005
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATION
The present application is related to co-pending U.S. patent application titled “System and Method for Writing to a Magnetic Shift Register,” which was filed on even date herewith, which is assigned to the same assignee as the present application, and which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention generally relates to memory storage systems, and particularly to a memory storage system that uses the magnetic moment of magnetic domains to store data. Specifically, the present invention relates to a system that uses current to move magnetic domains across read and write devices, allowing data to be stored in a shiftable magnetic shift register.
BACKGROUND OF THE INVENTION
The two conventional common non-volatile data storage devices are: disk drives and solid state random access memories (RAM). Disk drives are capable of inexpensively storing large amounts of data, i.e., greater than 100 GB. However, disk drives are inherently unreliable. A hard drive includes a fixed read/write head and a moving media upon which data is written. Devices with moving parts tend to wear out and fail. Solid state random access memories currently store data on the order of 1 GB (gigabyte) per device, and are relatively expensive, per storage unit, i.e., per 1 GB, compared to a disk drive.
The most common type of solid state RAM is Flash memory. Flash memory relies on a thin layer of polysilicon that is disposed in oxide below a transistor's on-off control gate. This layer of polysilicon is a floating gate, isolated by the silicon from the control gate and the transistor channel. Flash memory is relatively slow, with reading or writing times on the order of a microsecond. In addition, flash memory cells could begin to lose data after less than a million write cycles. While this may be adequate for some applications, flash memory cells would begin to fail rapidly if used constantly to write new data, such as in a computer's main memory. Further, the access time for flash memory is much too long for computer applications.
Another form of RAM is the ferroelectric RAM, or FRAM. FRAM stores data based on the direction that ferroelectric domains point. FRAM has access times much faster than Flash memory and consumes less energy than standard dynamic random access memory (DRAM). However, commercially available memory capacities are currently low, on the order of 0.25 MB (megabyte). In addition, memory storage in a FRAM relies on physically moving atoms, leading to eventual degradation of the medium and failure of the memory.
Yet another form of RAM is the Ovonic Unified Memory (OUM), which utilizes a material that alternates between crystalline and amorphous phases to store data. The material used in this application is a chalcogenide alloy. After the chalcogenide alloy experiences a heating and cooling cycle, it could be programmed to accept one of two stable phases: polycrystalline or amorphous.
The variation in resistance of the two phases leads to the use of the chalcogenide alloy as memory storage. Data access time is on the order of 50 ns. However, the size of these memories is still small, on the order of 4 MB currently. In addition, OUM relies on physically changing a material from crystalline to amorphous; which likely causes the material to eventually degrade and fail.
Semiconductor magnetoresistive RAM (MRAM) stores data as direction of magnetic moment in a ferromagnetic material. Atoms in ferromagnetic materials respond to external magnetic fields, aligning their magnetic moments to the direction of the applied magnetic field. When the field is removed, the atoms magnetic moments still remain aligned in the induced direction. A field applied in the opposite direction causes the atoms to realign themselves with the new direction. Typically, the magnetic moments of the atoms within a volume of the ferromagnetic material are aligned parallel to one another by a magnetic exchange interaction. These atoms then respond together, largely as one macro-magnetic moment, or magnetic domain, to the external magnetic field
One approach to MRAM uses a magnetic tunneling junction as the memory cell. The magnetic tunneling junction comprises two layers of ferromagnetic material separated by a thin insulating material. The direction of the magnetic domains is fixed in one layer. In the second layer, the domain direction is allowed to move in response to an applied field. Consequently, the direction of the domains in the second layer can either be parallel or opposite to the first layer, allowing the storage of data in the form of ones and zeros. However, currently available MRAM can only store up to 1 Mb (megabit), much less than needed for most memory applications. Larger memories are currently in development. In addition, each MRAM memory cell stores only one bit of data, thereby limiting the maximum possible memory capacity of such devices.
What is therefore needed is a memory device that may bridge the gap between the low cost and high capacity but fundamentally unreliable mechanical disk drives, and the high cost and, by comparison with disk drives, much lower capacity, of solid state RAMs. This memory should have a comparable capacity to that of disk drives, at competitive prices, but advantageously does not use moving parts, and does not require physical state changes to the material. The need for such a system has heretofore remained unsatisfied.
SUMMARY OF THE INVENTION
The present invention satisfies this need, and presents a system and an associated method (collectively referred to herein as “the system” or “the present system”) for a magnetic shift register, writing device, and reading device. Briefly, the present system uses the inherent, natural properties of the domain walls in ferromagnetic materials to store data. The present system utilizes one read/write device to access numerous bits, on the order of 100 bits of data or more. Consequently, a small number of logic elements can access hundreds of bits of data.
The present system uses spin based electronics to write and read data in ferromagnetic material so that the physical nature of the material is unchanged in the magnetic shift register of the present invention. In one embodiment, a shiftable magnetic shift register comprises a data track formed of a fine wire or strip of material made of ferromagnetic material. The wire may be comprised of a physically uniform, magnetically homogeneous ferromagnetic material or layers of different ferromagnetic materials. Information is stored as direction of magnetic moment within the domains in the track. The wire can be magnetized in small sections in one direction or another. An electric current is applied to the track to move the magnetic domains, along the track, in the direction of the electric current, past a reading or writing elements or devices. In a magnetic material with domain walls, a current passed across the domain wall moves the domain wall in the direction of the current flow. As the current passes through a domain, it becomes “spin polarized”. When this spin polarized current passes into the next domain across a domain wall, it develops a spin torque. This spin torque moves the domain wall. Domain wall velocities can be very high, on the order of 100 m/sec.
In summary, a current passed through the track with a series of magnetic domains with alternating directions, can move these domains past the reading and writing elements. The reading device can then read the direction of the magnetic moments. The writing device can change the direction of the magnetic moments, thus writing information to the track.
According to a preferred embodiment of the present invention, one read/write element is dedicated to a single track, with the understanding that in other embodiments, more than one read and/or write elements could be assigned to one or more tracks.
Associated with each domain wall are large magnetic fringing fields. The domain wall concentrates the change in magnetism from one direction to another in
Kassatly Samuel A.
Nguyen Tan T.
LandOfFree
Shiftable magnetic shift register and method of using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Shiftable magnetic shift register and method of using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shiftable magnetic shift register and method of using the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3324789