Method for forming a multi-layer circuit assembly

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S846000, C029S825000, C427S097100, C427S099300

Reexamination Certificate

active

06820330

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of electrical circuitry, and more particularly relates to the fabrication of individual panels with multiple layers.
BACKGROUND OF THE INVENTION
There continues to be an ever increasing need for multi-layer electronic assemblies which provide high density, complex interconnections for electrical components. Methods for forming multilayer electronic assemblies are taught in Dux et al., U.S. Pat. No. 5,224,265 and Ehrenberg et al. U.S. Pat. No. 5,232,548. The '265 patent discloses a high-density, multi-layer thin film structure and process for making a multi-layer structure wherein multiple individually testable sub-units are fabricated in parallel, pre-tested for operational performance, and joined together to form a three dimensional wiring matrix.
Commonly assigned U.S. Pat. No. 5,590,460 to DiStefano et al., the disclosure of which is incorporated by reference herein, teaches a process for making a multi-layered assembly including providing a sheet of a dielectric material having a top and a bottom surface. Layers of a temporary layer susceptible to etching are coated on the top and bottom surfaces of the dielectric sheet, respectively. Photoresist layers are then applied over the top and bottom temporary layers and are photographically exposed to develop openings which are perpendicular to the external surfaces of the assembly. The assembly is then expressed to an etchant to form aligned apertures in the top and bottom temporary layers. After formation of the holes, an electrically conductive structural material such as a metal is deposited within each hole and within the apertures in the top and bottom temporary layers. A structural material is then applied as a continuous layer covering the peripheral surfaces of the holes in the sheet and also covering the peripheral walls of the apertures in the temporary layers.
Despite these and other efforts in the art, there are needs for still further improvement.
SUMMARY OF THE INVENTION
According to one embodiment of the invention, a method of making a multi-layer circuit assembly includes providing a core structure having an inner dielectric element with first and second metal layers on opposite surfaces thereof. The dielectric element, such as a polyimide material, is preferably between about 25 to 50 microns thick. The first and second metal layers may comprise a highly conductive material such as copper and each metal layer is generally about are 1 to 18 thick. In one embodiment, the first metal layer on top of the dielectric element could serve as a ground plane and the second metal layer on the bottom surface of the dielectric element could serve as a power plane. The first and second metal layers will also act as a backbone for the final assembly to provide rigidity thereto. The specific composition of the first and second metal layers may vary depending upon the specific application for which the final assembly will be used, which in turn will determine the thermal coefficient of expansion and the ultimate dimensional stability of the assembly.
In the next stage of the process, one or more through vias are formed through the metal layers and the inner dielectric element. The through vias may be created by a variety of well know techniques such as punching, laser during or plasma etching. The through vias should extend entirely through the first metal layer, the dielectric element and the second metal layer. The exact location of the through vias may vary depending upon the specific requirements of the final assembly. In one preferred embodiment, the through vias may be formed by first etching the metal layers to form aligned holes therein, aligning a laser with the aligned holes and laser drilling through the dielectric element. In another embodiment, a YAG laser may be used. In a first drilling step, the first and second metal layers are drilled while the YAG laser is on high power. In a second drilling step, the dielectric element is drilled while the YAG laser is on low power. As will be discussed in more detail below, although laser drilling may be slightly more costly than plasma etching, laser drilling provides for better alignment of the holes in the metal layers with the holes in the dielectric element. In addition, the side walls formed using a laser are more uniform than those formed with etching techniques.
After the through vias have been formed, the first and second metal layers and the through vias are coated with a dielectric material, such as a polyimide or an epoxy, to form a coated structure having first and second outer dielectric layers. The dielectric material is applied using well known techniques such as dipping, spin coating and plating techniques (e.g. preferably electrophoretic plating). During the coating process, all of the exposed surfaces of the metal layers, including the side walls of the through vias, are covered by the dielectric material. The thickness of the dielectric material coating should be uniform. For example, in certain preferred embodiments, after the coating step, the outer dielectric layers have a uniform thickness of approximately 25 to 75 microns. The exact thickness of the dielectric material is controlled so that the through vias remain open after the coating process. For example, in certain embodiments, the diameter of the through vias is approximately 175 to 200 microns before the coating process and approximately 25 to 150 microns after the coating process.
In the next stage of the process, outer metal layers comprising highly conductive materials such as copper are provided over the first and second outer dielectric layers, respectively. The step of providing the outer metal layers over the first and second outer dielectric layers may include the steps of seeding the exterior surface of the outer dielectric layers, such as by exposure to a liquid seeding process or by sputter deposition. For example, an adhesion promoting layer of a conductive base, such as a graphite seed, may be applied. The seed layer contacts the first and second outer dielectric layers. The outer metal layers are then electroplated over the seed layer as by connecting an electroplating potential source to the first and the second metal layers and immersing the assembly in an electroplating bath with a counter electrode. The outer metal layers may also be provided using electroless plating or sputtering techniques. The outer metal layers substantially conform to the shape of the first and second outer dielectric layers. Each outer metal layer preferably has a thickness of approximately 1 to 18 microns and most preferably a thickness of approximately 1 to 6 microns; however, the exact thickness of the outer metal layers will depend upon the particular application for which the assembly will be used. Finally, the coated through vias are metallized to form metallic via liners which are connected to the outer metal layers and which are insulated from the first and second metal layers.
In other preferred embodiments, the adhesion between the outer metal layers and the first and second outer dielectric layers may be enhanced by providing a tie coat including nickel and chrome. In these embodiments, the nickellchrome tie coat is provided directly over the outer dielectric layers and then a seed layer, such as copper, is provided over the tie coat. Finally another layer of copper, which is thicker than the seed layer, is provided over the seed layer.
In the next stage of the process signal lines are formed by selectively patterning the outer metal layers to form first signal lines overlying, the first metal layer and second signal lines overlying the second metal layer. The selectively patterning step includes the step of selectively removing portions of the outer metal layers such as by selectively etching the outer metal layers. In one embodiment, a photo-resist layer is provided over the outer metal layers and the layers are then subjected to an etching process to pattern the signal lines therein. In other embodiments the selective

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming a multi-layer circuit assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming a multi-layer circuit assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming a multi-layer circuit assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3321039

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.