LED lighting assembly

Illumination – Light source and modifier – With ventilating – cooling or heat insulating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S373000, C362S547000, C362S800000, C362S555000

Reexamination Certificate

active

06827468

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a new assembly for packaging a high intensity LED lamp for further incorporation into a lighting assembly. More specifically, this invention relates to an assembly for housing a high intensity LED lamp that provides integral electrical connectivity, integral heat dissipation and an integral reflector device in a compact and integrated package for further incorporation into a lighting device and more specifically for use in a flashlight.
Currently, several manufacturers are producing high brightness light emitting diode (LED) packages in a variety of forms. These high brightness packages differ from conventional LED lamps in that they use emitter chips of much greater size, which accordingly have much higher power consumption requirements. In general, these packages were originally produced for use as direct substitutes for standard LED lamps. However, due to their unique shape, size and power consumption requirements they present manufacturing difficulties that were originally unanticipated by the LED manufacturers. One example of a high brightness LED of this type is the Luxeon™ Emitter Assembly LED (Luxeon is a trademark of Lumileds Lighting, LLC). The Luxeon LED uses an emitter chip that is four times greater in size than the emitter chip used in standard LED lamps. While this LED has the desirable characteristic of producing a much greater light output than the standard LED, it also generates a great deal more heat than the standard LED. If this heat is not effectively dissipated, it may cause damage to the emitter chip and the circuitry required to drive the LED.
Often, to overcome the buildup of heat within the LED, a manufacturer will incorporate a heat dissipation pathway within the LED package itself. The Luxeon LED, for example, incorporates a metallic contact pad into the back of the LED package to transfer the heat out through the back of the LED. In practice, it is desirable that this contact pad in the LED package be placed into contact with further heat dissipation surfaces to effectively cool the LED package. In the prior art attempts to incorporate these packages into further assemblies, the manufacturers that used the Luxeon LED have attempted to incorporate them onto circuit boards that include heat transfer plates adjacent to the LED mounting location to maintain the cooling transfer pathway from the LED. While these assemblies are effective in properly cooling the LED package, they are generally bulky and difficult to incorporate into miniature flashlight devices. Further, since the circuit boards that have these heat transfer plates include a great deal of heat sink material, making effective solder connections to the boards is difficult without applying a large amount of heat. The Luxeon LED has also been directly mounted into plastic flashlights with no additional heat sinking. Ultimately however, these assemblies malfunction due to overheating of the emitter chip, since the heat generated cannot be dissipated.
There is therefore a need for an assembly that provides for the mounting of a high intensity LED package that includes a great deal of heat transfer potential in addition to providing a means for further incorporating the LED into the circuitry of an overall lighting assembly.
BRIEF SUMMARY OF THE INVENTION
In this regard, the present invention provides an assembly that incorporates a high intensity LED package, such as the Luxeon Emitter Assembly described above, into an integral housing for further incorporation into other useful lighting devices. The present invention can be incorporated into a variety of lighting assemblies including but not limited to flashlights, specialty architectural grade lighting fixtures and vehicle lighting. The present invention primarily includes two housing components, namely an inner mounting die, and an outer enclosure. The inner mounting die is formed from a highly thermally conductive material. While the preferred material is brass, other materials such as thermally conductive polymers or other metals may be used to achieve the same result. The inner mounting die is cylindrically shaped and has a recess in the top end. The recess is formed to frictionally receive the mounting base of a high intensity LED assembly. A longitudinal groove is cut into the side of the inner mounting die that may receive an insulator strip or a strip of printed circuitry, including various control circuitry thereon. Therefore, the inner mounting die provides both electrical connectivity to one contact of the LED package and also serves as a heat sink for the LED. The contact pad at the back of the LED package is in direct thermal communication with the inner surface of the recess at the top of the inner mounting die thus providing a highly conductive thermal path for dissipating the heat away from the LED package.
The outer enclosure of the present invention is preferably formed from the same material as the inner mounting die. In the preferred embodiment, this is brass but may be thermally conductive polymer or other metallic materials. The outer enclosure slides over the inner mounting die and has a circular opening in the top end that receives the clear optical portion of the Luxeon LED package therethrough. The outer enclosure serves to further transfer heat from the inner mounting die and the LED package, as it is also highly thermally conductive and in thermal communication with both the inner mounting die and the LED package. The outer enclosure also covers the groove in the side of the inner mounting die protecting the insulator strip and circuitry mounted thereon from damage.
Another feature of the outer enclosure of the present invention is that the end that receives the optical portion of the LED package also serves as a reflector for collecting the light output from the LED package and further focusing and directing it into a collimated beam of light. After assembly, it can be seen that the present invention provides a self contained packaging system for the Luxeon Emitter Assembly or any other similar packaged high intensity LED device. Assembled in this manner, the present invention can be incorporated into any type of lighting device.
Accordingly, one of the objects of the present invention is the provision of an assembly for packaging a high intensity LED. Another object of the present invention is the provision of an assembly for packaging a high intensity LED that includes integral heat sink capacity. A further object of the present invention is the provision of an assembly for packaging a high intensity LED that includes integral heat sink capacity while further providing means for integral electrical connectivity and control circuitry. Yet a further object of the present invention is the provision of an assembly for packaging a high intensity LED that includes integral heat sink capacity, a means for electrically connectivity and an integral reflector cup that can creates a completed flashlight head for further incorporation into a flashlight housing or other lighting assembly.
Other objects, features and advantages of the invention shall become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawings.


REFERENCES:
patent: 3739241 (1973-06-01), Thillays
patent: 6407411 (2002-06-01), Wojnarowski et al.
patent: 6452217 (2002-09-01), Wojnarowski et al.
patent: 6481874 (2002-11-01), Petroski
patent: 6498355 (2002-12-01), Harrah et al.
patent: 6541800 (2003-04-01), Barnett et al.
patent: 2003/0095408 (2003-05-01), Opolka
patent: 2241318 (1991-08-01), None
LUMILEDS Lighting, LLC, Luxeon Emitter,-Technical Datasheet DS25, 12 pages Nov. 2002.
LUMILEDS Lighting, LLC, Thermal Design Using Luxeon Power Light Sources-Application Brief AB05, 11 pg Nov. 2002.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

LED lighting assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with LED lighting assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LED lighting assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.