Optical apparatus, optical apparatus adjustment method, and...

Optics: measuring and testing – Angle measuring or angular axial alignment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S153000

Reexamination Certificate

active

06781682

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an optical apparatus consisting of an optical unit comprising a plurality of optical elements wherein the adjustment of a certain optical element affects the results of adjustment of the other optical elements along with an adjustment apparatus that adjusts the optical elements, the adjustment method therefor, and a storage medium recorded with a processing program that executes said adjustment method, and also relates to lasers, wave-front controllers or telescopes as the optical apparatus that use said adjusted optical units.
2. Description of the Prior Art
Conventional methods of raising the performance of functions implemented by optical apparatus to a stipulated target value include (1) having the optical elements be adjusted by a skilled technician and (2) adopting high-precision optical elements.
However, with the method (1) of having the optical elements be adjusted by a skilled technician, it is necessary to perform the adjustments at the place where the optical apparatus is installed, and when one optical element is adjusted, it becomes necessary to adjust the other optical elements associated with that element, and thus a large amount of time is needed for the adjustment. In addition, adequate adjustment results may not be obtained even with a skilled technician, and it is not possible to make an objective judgment as to whether or not the results of adjustment of the optical apparatus are suitable. Moreover, there is also the problem of high adjustment costs due to the need for a skilled technician.
In order to minimize the burden of adjustment of optical elements by skilled technicians, the method (2) of adopting high-precision optical elements has been used. However, high-precision optical elements have problems in that they are typically expensive and a stable supply is not available, thus complicating the manufacture of optical apparatus.
For this reason, the conventional methods had drawbacks in that the manufacturing costs for optical apparatus were high, adjustment by skilled technicians was necessary and adjustment times were long.
In the aforementioned adjustment methods, were automatic adjustment to be possible, then this would be effective since skilled technicians would not be necessary. However, in the adjustment of adjustment location (1), as shown in
FIG. 2
, typically the effects of the adjustment location on the functions of the optical apparatus are not independent of other adjustment locations, so automatic adjustment is extremely difficult, and thus a skilled technician has been required for this adjustment.
To wit, in the case in which an optical apparatus has a plurality of adjustment locations, it is often the case that there are mutual dependencies between these adjustment locations.
FIG. 2
is an explanatory diagram showing an example of a case in which there are dependencies (correlations) between the adjustment location and adjustment results across adjustment locations. For example, the first adjustment location may be adjusted to optimize the functions of the optical apparatus and then the second adjustment location is adjusted further to optimize the functions of the optical apparatus. At this time, since the adjustment of the second adjustment location was performed, the results of adjusting the first adjustment location are no longer optimized, and if readjustment is performed, results of adjustment different from the first time would be optimal.
We shall now explain these dependencies using the laser cavity as an example. The laser cavity typically consists of three or more mirrors and prisms, and the light path is a loop. Here, changing the position or orientation of one mirror changes the entire light path. Thus this also changes the optimal position and orientation of all of the mirrors. This means that changing either the position or direction of a mirror or prism, which are the adjustment locations, will change the optimal results of adjustment of all of the other adjustment locations.
In the case in which the adjustment of a plurality of adjustment locations are not independent as described above, the magnitude of the range of adjustment has the same number of dimensions as the number of interconnected adjustment locations, so the adjustment search space expands exponentially with the number of adjustment locations, leading to a combinatorial explosion and thus adjustment requires an unrealistic amount of time, or adjustment may become impossible. As one example, if we assume that there are 10 adjustment locations that are adjusted with an 8-bit setting signal, considering the case in which all are associated, the adjustment search space includes an enormous number of combinations calculated to be 28
80
≈10
24
(10 to the power of 24), so adjustment by conventional methods requires an unrealistic amount of time and is thus impossible.
Conventional industrial laser apparatus consists of mirrors, laser crystals (optical crystals), dispersion elements (prisms) and other optical components and support components. In a laser cavity consisting of these components, the layout of the optical components must be set with micrometer accuracy. Mirrors must be adjusted in five different directions: longitudinal, lateral, vertical, lateral reflection angle and vertical reflection angle. Two or more mirrors and their support components are installed within a laser oscillator. When functional improvements are made to a laser apparatus such as increasing its power or shortening its pulse, the number of mirrors, dispersion elements or other optical components can reach six or more. The number of adjustment locations on their support components can become large at 30 or more locations.
On the other hand, since the intensity of light is strong in the laser cavity, nonlinear phenomena are induced due to the Kerr-lens effect, so the laser output light is subject to fluctuations in its power, wavelength, lateral modes and the like. Therefore, the optimal layout conditions for the optical components also change depending on the nonlinear phenomena. In the case of a pulsed laser, the optimal layout of the optical components differs between the shortest-pulse conditions and the maximum-output conditions.
The search for optimal layout conditions is typically performed by a skilled engineer. In the case in which the number of optical components is roughly six, this generally takes a skilled person roughly one week but an unskilled person would require adjustment time of one month or more. Moreover, in the aforementioned adjustment, since the positions of the support components for optical component slip with time, the light output of a laser apparatus fluctuates with time so the adjustment becomes even more difficult.
The optimization of a laser apparatus is conventionally performed through feedback to the laser apparatus of information on the light output from the laser apparatus. This information on the light output consists of the power (intensity of the light output), position and direction of the light path, wavelength, phase, wave front, pulse width and the like. When the laser beam is spatially divided and this information is evaluated for each, a large number of evaluation values are obtained. These evaluation values are mutually dependent and these correlations depend on the operating conditions of the laser apparatus. It is quite typical for two or more evaluation values to be present in this manner.
However, in the prior art, regarding power among the information on the light output, only the excitation light intensity is subjected to control, and regarding the position and direction of the light path among the information on the light output, only the position/direction of the mirrors whose position/direction is controllable are subjected to control.
These methods are characterized by finding a single optical element that strongly affects the evaluation values and then performing feedback control on that single element. In these methods, only a single elemen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical apparatus, optical apparatus adjustment method, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical apparatus, optical apparatus adjustment method, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical apparatus, optical apparatus adjustment method, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3314299

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.