Longitudinal plate assembly having an adjustable length

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S064000, C606S070000

Reexamination Certificate

active

06689134

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to a spinal implant assembly for holding vertebral bones fixed relative to one another. More particularly, the invention relates to a longitudinal plate assembly having an adjustable length and two ends that each can be coupled to a body structure, such as a vertebral bone, for use in surgical procedures for stabilizing the relative motion of, or permanently immobilizing, the body structures.
BACKGROUND OF THE INVENTION
The bones and connective tissue of an adult human spinal column consists of more than twenty discrete bones coupled sequentially to one another by a tri-joint complex which consist of an anterior disc and the two posterior facet joints, the anterior discs of adjacent bones being cushioned by cartilage spacers referred to as intervertebral discs. These more than twenty bones are anatomically categorized as being members of one of four classifications: cervical, thoracic, lumbar, or sacral. The cervical portion of the spine, which comprises the top of the spine, up to the base of the skull, includes the first seven vertebrae. The intermediate twelve bones are the thoracic vertebrae, and connect to the lower spine comprising the five lumbar vertebrae. The base of the spine includes the sacral bones (including the coccyx). The component bones of the cervical spine are generally smaller than those of the thoracic spine, which are in turn smaller than those of the lumbar region. The sacral region connects laterally to the pelvis. While the sacral region is an integral part of the spine, for the purposes of fusion surgeries and for this disclosure, the word spine shall refer only to the cervical, thoracic, and lumbar regions.
Referring now to
FIGS. 1 and 2
, a typical vertebral body is shown in a top view and a side view. The spinal cord is housed in the central canal
10
, protected from the posterior side by a shell of bone called the lamina
12
. The lamina
12
has three large protrusions, two of which extend laterally from the shell and are referred to as the transverse process
14
. The third extends back and down from the lamina and is called the spinous process
16
. The anterior portion of the spine comprises a set of generally cylindrically shaped bones which are stacked one on top of the other. These portions of the vertebrae are referred to as the vertebral bodies
20
, and are each separated from the other by the intervertebral discs
22
. Pedicles
24
are bone bridges which couple the anterior vertebral body
20
to the corresponding lamina
12
and posterior elements
14
,
16
.
The spinal column of bones is highly complex in that it includes over twenty bones coupled to one another, housing and protecting critical elements of the nervous system which have innumerable peripheral nerves and circulatory bodies in close proximity. In spite of these complications, the spine is a highly flexible structure, capable of a high degree of curvature and twist in nearly every direction.
Genetic or developmental irregularities, trauma, chronic stress, tumors, and disease are a few of the causes which can result in spinal pathologies for which permanent immobilization of multiple vertebral bodies may be necessary. A variety of systems have been disclosed in the art which achieve this immobilization by implanting artificial assemblies in or on the spinal column. These assemblies may be classified as anterior, posterior, or lateral implants. As the classification suggests, posterior implants are attached to the back of the spinal column, generally hooking under the lamina and entering into the central canal, attaching to the transverse process, or coupling through the pedicle bone. Lateral and anterior assemblies are coupled to the vertebral bodies.
The region of the back which needs to be immobilized, as well as the individual variations in anatomy, determine the appropriate surgical protocol and implantation assembly. The use of screw plate assemblies for stabilization and immobilization via lateral or anterior entrance is, however, common.
Because spinal injuries vary with regard to the number of vertebral bodies affected, the proximity of the affected vertebral bodies with respect to one another, and the proximity of the unaffected or stable vertebral bodies with respect to one another, it is necessary for the treatment of a given spinal injury to use a plate assembly having a length that can be used effectively to immobilize, with respect to one another, those vertebral bodies that must be so immobilized to achieve clinically desirable results. For example, depending on the spinal injury, it may be necessary to immobilize two adjacent vertebral bodies. Or, for example, it may be necessary to immobilize two vertebral bodies on either side of one or more unstable or damaged vertebral bodies. Potentially, each spinal injury therefore requires a plate assembly having a different length.
In addition, the vertebral bodies of the spine are not all equal in length or identical in shape. Some are smaller than others, and are therefore shorter and, for example, have smaller transverse processes, spinous processes, and/or smaller pedicles. Therefore, depending on the location of the spinal injury along the spine, it is again necessary to select a plate assembly having a length that can be used effectively to immobilize, with respect to one another, those vertebral bodies that must be so immobilized to achieve clinically desirable results. For example, in the cervical portion of the spine, the immobilization of two adjacent vertebral bodies will require a plate assembly of a given length, while the immobilization of two adjacent vertebral bodies in the lumbar region will typically require a plate assembly that is longer. And, of course, the selection of the plate assembly of appropriate length must take into account the specific location of the bone structures to which the a plate assembly will be coupled, as these specific locations vary depending on the spinal injury and the damage caused thereby.
Further, because the spine is routinely subject to high loads which cycle during movement, one of the primary concerns of physicians performing spinal implantation surgeries, as well as of the patients in whom the implants are placed, is the risk of screw pull-out. Screw pull-out occurs when the cylindrical portion of the bone which surrounds the inserted screw fails. A bone screw which is implanted perpendicular to the plate is particularly weak because the region of the bone which must fail for pull-out to occur is only as large as the outer diameter of the screw threads. It has been found that for pull-out to occur for a pair of screws which are angled inward, “toe nailed”, or ones which diverge within the bone, the amount of bone which must fail increases substantially as compared to pairs of screws which are implanted in parallel along the axis that the loading force is applied. It has, therefore, been an object of those in the art to provide a screw plate assembly which permits the screws to be entered into the vertebral body at angles other than 90 degrees.
A great concern, however, with screws being implanted in the anterior portion of the spine, most particularly in the cervical spine, is that there are important internal tissue structures which, because of their proximity to the implant, may be damaged by a dislocated screw. In the cervical spine, the esophagus is located directly in front of the anterior surface of the vertebral body, and therefore, in potential contact with an implanted cervical plate assembly. Breaches of the esophageal wall permit bacterial contamination of the surrounding tissues, including the critical nerves in and around the spinal cord. Such contamination can be fatal. Because screw pull-out represents one of the largest risks of esophageal perforation, it has been an object of those in the art to produce a cervical screw plate assembly having a locking means which couples, not only the plate assembly to the bone, but locks the screw to the plate assembly. In such a design, it is intended

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Longitudinal plate assembly having an adjustable length does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Longitudinal plate assembly having an adjustable length, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Longitudinal plate assembly having an adjustable length will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.