Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control
Reexamination Certificate
2002-12-16
2004-11-09
Black, Thomas G. (Department: 3661)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Robot control
C700S246000, C700S249000, C700S250000, C700S253000, C700S079000, C700S080000, C700S086000, C701S001000, C702S183000, C707S793000, C707S793000, C709S241000, C171S107000
Reexamination Certificate
active
06816753
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a robot control system for controlling articulated robots, such as legged walking robots, using a software program, and more particularly, it relates to a robot control system for controlling articulated robots, in which the hardware configuration might be significantly modified according to attachment/detachment or replacement of moving units such as legs and a head, using a software program. More specifically, the present invention relates to a robot control system for controlling articulated robots using a software program which comprises a combination of a software layer having a high dependency upon the hardware configuration and a software layer having no dependency upon the hardware configuration, and to a program interface between the software layers, and more particularly, it relates to a robot control system for controlling articulated robots by dynamically modifying a combination of a hardware-dependent software layer, such as middleware, and a hardware-independent software layer, such as an application, and to a program interface between the software layers.
BACKGROUND ART
A mechanical apparatus which utilizes electric or magnetic actions to perform motions which resemble motions of human beings is referred to as a “robot.” It is said that the word robot is etymologically derived from the Slavic word ROBOTA (slave machine). In our country, robots have been widely used since the end of the 1960s, but most of them have been manipulators for the purpose of automated or unmanned production operations at factory or industrial robots such as conveyor robots.
Recently, research and development have advanced on the structure and stable walk control of legged mobile robots including pet robots which simulate the physical mechanisms or motions of four-legged walking animals such as dogs and cats, and “human shaped” or “human type” robots (humanoid robots) which simulate the physical mechanisms or motions of biped walking animals such as human beings or apes. Thus, expectations on the practical use thereof have increased. These legged mobile robots are less stable and have more difficult posture control and walk control than crawler robots, but are advantageous in that they can realize flexible walking and running motions such as moving up and down the stairs and leaping over obstacles.
Stationary type robots, like arm type robots, which are installed and used in a particular place, perform activities only in fixed and local working spaces such as part assembling or selecting jobs. On the other hand, mobile robots, whose working spaces are not restrictive, freely move on a predetermined path or out of a path to take on predetermined or arbitrary human operations or to offer various services on behalf of human beings, dogs, or other living things.
One use of legged mobile robots is to take on various difficult tasks in industrial activities, production activities, etc. For example, dangerous jobs or difficult jobs such as maintenance jobs in nuclear power plants, thermal power plants, or petrochemical plants, part conveying and assembling jobs at manufacturing factory, cleaning of tall buildings, and rescues at fires or other sites are taken on, etc.
Other uses of legged mobile robots include living uses, i.e., “coexistent” uses with human beings or “entertainment” uses. Robots of this type emulate a variety of emotional expressions using the motion mechanisms or the extremities of relatively intelligent legged walking animals such as human beings and dogs (pets). Not only are pre-entered motion patterns strictly performed, but vivid expressions which dynamically respond to words or attitudes (such as “praise,” “scolding,” “hitting,” etc.) received from a user (or any other robot) are also demanded.
Conventional toy machines have a fixed relationship between a user operation and a responsive motion, and the motions of the toy cannot be modified according to the preference of users. As a result, users soon get tired of such toys that repeat the same motions.
On the other hand, intelligent robots comprise a behavior model or a learning model which originates from motions, and allows the models to be modified based on external input information, such as voices, pictures, or touch, to determine a motion, thereby realizing an autonomous thought or motion control. Robots which are provided with an emotion model or an instinct model can develop autonomous behaviors according to the robots' own emotions or instinct. The robots are equipped with an image input apparatus or voice input/output apparatus to perform an image recognition process or a voice recognition process, thereby also making it possible to realize realistic communication with human beings at a higher intelligence level.
Recent legged mobile robots have high information processing ability, and these intelligent robots themselves can be thus considered as a kind of computing system.
For example, robots maintain models of various rules for motions, such as an emotion model, a behavior model, and a learning model. According to each of the models, the robots make a behavior plan in response to external factors such as a user's action, and perform the behavior plan by driving jointed actuators or through voice outputs, which can be then fed back to the user. A motion control of the robots for making a behavior plan or performing it on the machine is implemented in the form of executing a program code (for example, an application etc.) on the computing system.
A major difference between a general computing system and a robot is that the former has fewer differences in the kind or combination of hardware components constituting the system (that is, hardware configuration) from system to system, while the latter has a hardware configuration which significantly varies from system to system. For example, there are a variety of kinds of mobile robots, including a robot having movable units attached to a body formed of a head, legs, and a tail, and a robot consisting of a body and a wheel.
In a computing system in which the installed hardware configuration is relatively uniform from system to system, the design of software executed on the system may not be relatively affected by hardware. On the contrary, in of the latter robot case, particularly, a control software layer, such as middleware in which hardware operation is executed, has an extremely high dependency upon hardware.
For example, if a moving control of a robot is considered, the criteria of determining the stability during moving and walking is completely different whether moving means comprises movable legs, or a wheel, or two legs or four legs, and an operating environment in which the application is executed is significantly different from system to system.
If the software development of robots is considered, in view of this circumstance, it seems efficient to discriminate a software layer having a relatively low dependency upon hardware from a software layer having a high dependency upon hardware. In other words, hardware-independent software and hardware-dependent software are separately developed, and a combination thereof is modified to provide a product lineup having a variety of different characteristics and capabilities.
The hardware-independent software is, for example, application layer software in which processing which is less associated with hardware operations such as an emotion model, a behavior model, and a learning model is performed. The hardware-dependent software is, for example, middleware layer software formed of a group of software modules which provide basic features of a robot
1
, and the configuration of each of the modules is affected by hardware attributes including the mechanical or electrical characteristics or specifications and the shape of the robot. Roughly, the middleware is functionally classified into recognition middleware which processes and recognizes an input of a sensor of each portion, and then notifies the upper application of this, and by output middleware which p
Fujita Masahiro
Hosonuma Naoyasu
Inoue Makoto
Sakamoto Takayuki
Takagi Tsuyoshi
Black Thomas G.
Marc McDieunel
LandOfFree
Robot control system and robot control method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Robot control system and robot control method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Robot control system and robot control method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3312878