Radiolocation system having writing pen application

Communications: directive radio wave systems and devices (e.g. – Directive – Position indicating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S465000

Reexamination Certificate

active

06747599

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to radiolocation systems, and more particularly to very short range pulsed microwave time-of-arrival systems. These systems can be used for wireless handwriting digitizing, a wireless computer mouse, machine automation, or virtual reality systems.
2. Description of Related Art
Precision short range location systems have employed ultrasound, optical, magnetic, inertial, and radio frequency (RF) technologies to locate a wireless moving object such as a writing pen for digitizing handwriting. While each technology has advantages, their disadvantages appear to have limited their widespread use.
Wireless pen location based on time-of-arrival (TOA) of ultrasound pulses can provide, at first glance, a highly accurate, low cost digitized handwriting system. However, the limitations to ultrasound are numerous and essentially insurmountable: (1) the speed of sound varies 10% over common outdoor temperature, greatly limiting accuracy, (2) ultrasonic noise from computer monitors, jangling keys, etc. reduce reliability, (3) propagation path blockage by a user's arm or hand limit the choice of transducer locations to the top of the writing tablet, leading to severe geometric dilution of precision (DOP), (4) most ultrasonic transducers are highly directional, limiting coverage across a writing tablet, and (5) slow acoustic propagation velocity limits the pulse rate (due to range ambiguities), limiting response time to only accommodate slow handwriting.
Inertial location techniques use accelerometers mounted in a writing pen to provide position information by integration of acceleration signals. There is no absolute positional reference frame, forcing the user to locate writing position on a computer screen, like a mouse. Accuracy is limited by drift in the integrators needed to convert acceleration to position. In addition, low cost high accuracy accelerometers are not available, leaving inertial writing pen technology to specialty or high-end markets.
Magnetic writing pens employ a coarse X-Y wire grid under a writing tablet to detect oscillating magnetic fields from the tip of a writing pen, where the position between the nearest wires is interpolated from magnetic signal strength. Since magnetic field strength varies with the cube of range for close-in fields, interpolation can be difficult unless the grid spacing is kept small, requiring a large number of detectors or multiplexers. Movement of the pen in the Z-direction (above the tablet) would substantially alter the magnetic field gradient and the interpolation accuracy, preventing use with a thick pad of paper, and preventing 3-D operation.
Optical writing pens use light emitting diodes or lasers mounted in the pen and position sensitive detectors (PSD) mounted on a writing tablet or nearby fixture to locate the pen's position. The PSD is formed with several photodiodes and lenses or with a strip-like photodiode and lens. In either case, proportional analog voltages are produced as a function of pen location, with an accuracy limited to perhaps 1% of full tablet range by photodiode gain differences, dark currents, image size and focus variations, background illumination, etc. Accuracy is also limited by the choice of PSD locations, which are confined to the top of the writing tablet where a user's arm or hand will not block the light path, leading to severe geometric dilution of precision. Battery power limitations in the pen limit optical output power, and consequently, the signal-to-noise ratio at the photodiode receiver output, thereby limiting the ability to track fast handwriting. Optical devices are at a fundamental disadvantage to RF devices since photodetectors generally provide 30 to 60 dB lower output than a comparable microwave system with the same transmit drive power and range, and photodiodes cost more than a simple microwave antenna.
U.S. Pat. No. 5,589,838, “Short Range Radio Location System,” to McEwan, 1996, describes a time-of-arrival system employing a wireless “rover” (i.e., moving object) that transmits short microwave pulses at an RF frequency of 2 GHz. An array of two or more receivers at known locations samples the RF environment to determine the relative arrival times of the transmitted pulses. The arrival times are converted to relative distances and the exact location of the rover is determined using simple geometric relations.
A key feature of the '838 patent is the use of two-frequency timing. The receivers sample the RF environment at a first pulse repetition frequency PRF
R
that is slightly offset from a second frequency, the transmit pulse repetition frequency PRF
T
, by a frequency &Dgr;. For example, PRF
T
is 2,000,000 Hz and the receivers all sample with an offset frequency &Dgr; of 100 Hz at a second frequency PRF
R
of 2,000,100 Hz (or 1,999,900 Hz). The offset frequency in the receiver, PRF
R
, causes the sample timing to slip 360° in phase once each 1/&Dgr; seconds. This phase slippage causes the sampled output of the receivers to produce an equivalent time replica of the 2 GHz RF pulses on a time scale related to the offset frequency &Dgr;, i.e., the phase slippage rate. There is a time expansion factor EF=PRF
T
/&Dgr;=20,000 for &Dgr;=100 Hz and PRF
T
=2 MHz, and the transmit pulse repetition interval PRI
T
=1/PRF
T
is expanded from ½ MHz=500 ns to a receiver output pulse repetition interval of F/2 MHz=10 ms. Thus, the arrival time signals from the receivers appear on a 20,000 times slower time scale, which makes precision detection and processing of the signals vastly simpler. This is important to many applications, such as handwriting digitizing, that require sub-picosecond accuracy.
A handwriting digitizing application of the techniques disclosed in the '838 patent, using time-of-arrival receivers operating with two-frequency timing, is disclosed in U.S. Pat. No. 5,977,958, “Method and System for Digitizing Handwriting,” to Baron, 1999.
SUMMARY OF THE INVENTION
According to the invention, a wireless transmitter mounted in a movable object, e.g., a handwriting pen, transmits microwave RF bursts at a PRF of 10 MHz (or any other selected frequency). Two or more receivers sample the microwave RF environment at the same 10 MHz rate. Upon receiving RF bursts from the transmitter, timing circuitry coupled to the receivers locks its 10 MHz PRF to the transmit 10 MHz PRF (with no offset &Dgr;). Once locked, there is no phase slippage between the transmit PRF and the receive PRF since they are locked to exactly the same frequency and phase. A swept timing circuit sweeps the sample timing to produce expanded time representations of the RF bursts that are suitable for precision processing into location fixes.
A key advantage to the use of RF bursts for handwriting digitization is the ability to locate receive antennas below a dielectric writing surface, including a thick pad of paper, where the RF propagation path cannot be blocked by a user's arm or hand, or by the writing paper itself. Receive antennas can be located at the four corners of the tablet and at other locations below the writing surface, if desired, to essentially eliminate geometric dilution of precision. In addition, the pen may be accurately tracked while it is several inches (or more) above the tablet, allowing the pen to serve multiple functions as a writing instrument, a mouse and a joystick.
The present invention provides for operation with more than one transmitter housed within the moving object (or pen). This is accomplished by time-spacing the pulses from the additional transmitters. The use of two transmitters in a handwriting-digitizing pen provides pen tilt and inversion information, and facilitates 3-D location fixes with all the receiver antennas located below the writing surface.
A further advantage to the use of RF bursts is that short propagation times from a writing pen to receive antennas allow the use of very high pulse rates with a corresponding

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiolocation system having writing pen application does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiolocation system having writing pen application, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiolocation system having writing pen application will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3310950

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.