Mch3, a novel apoptotic protease, nucleic acids encoding and...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023200, C536S023400, C435S320100

Reexamination Certificate

active

06686459

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to apoptosis or, programed cell death, and more particularly, to a novel cysteine protease which can be used to modulate apoptosis for the therapeutic treatment of human diseases.
Apoptosis is a normal physiological process of cell death that plays a critical role in the regulation of tissue homeostasis by ensuring that the rate of new cell accumulation produced by cell division is offset by a commensurate rate of cell loss due to death. It has now become clear that disturbances in apoptosis (also referred to as physiological cell death or programmed cell death) that prevent or delay normal cell turnover can be just as important to the pathogenesis of diseases as are known abnormalities in the regulation of proliferation and the cell cycle. Like cell division, which is controlled through complex interactions between cell cycle regulatory proteins, apoptosis is similarly regulated under normal circumstances by the interaction of gene products that either induce or inhibit cell death.
The stimuli which regulate the function of these apoptotic gene products include both extracellular and intracellular signals. Either the presence or the removal of a particular stimuli can be sufficient to evoke a positive or negative apoptotic signal. For example, physiological stimuli that prevent or inhibit apoptosis include, for example, growth factors, extracellular matrix, CD40 ligand, viral gene products neutral amino acids, zinc, estrogen and androgens. In contrast, stimuli which promote apoptosis include growth factors such as tumor necrosis factor (TNF), Fas, and transforming growth factor &bgr; (TGF&bgr;), neurotransmitters, growth factor withdrawal, loss of extracellular matrix attachment, intracellular calcium and glucocorticoids, for example. Other stimuli, including those of environmental and pathogenetic origins, also exist which can either induce or inhibit programmed cell death. Although apoptosis is mediated by diverse signals and complex interactions of cellular gene products, the results of these interactions ultimately feed into a cell death pathway that is evolutionarily conserved between humans and invertebrates.
Several gene products which modulate the apoptotic process have now been identified. Although these products can in general be separated into two basic categories, gene products from each category can function to inhibit or induce programmed cell death. One family of gene products are those which are members of the Bcl-2 family of proteins. Bcl-2, is the best characterized member of this family and inhibits apoptosis when overexpressed in cells. Other members of this gene family include, for example, Bax, Bak, Bcl-x
L
Bcl-x
S
, and Bad. While some of these proteins can prevent apoptosis others augment apoptosis (e.g. Bcl-x
L
and Bak, respectively).
A second family of gene products, the interleukin-1-beta converting enzyme (ICE) family of proteases are related genetically to the
C. elegans
Ced-3 gene product which was initially shown to be required for programmed cell death in the roundworm,
C. elegans
. The ICE family of proteases includes human ICE, ICH-1
L
, ICH-1
S
, CPP32, Mch2, ICH-2 and ICE
rel

III. Among the common features of these gene products is that 1) they are cysteine proteases with specificity for substrate cleavage at Asp-x bonds, 2) they share a conserved pentapeptide sequence (QACRG) within the active site and 3) they are synthesized as proenzymes that require proteolytic cleavage at specific aspartate residues for activation of protease activity. Cleavage of the proenzyme produces two polypeptide protease subunits of approximately 20 kD (p20) and 10 kD (p10) which, in the case of ICE, combine non-covalently to form a tetramer comprised of two p20:p10 heterodimers. Although these proteases, when expressed in cells, induce cell death, several alternative structural forms of these proteases, such as ICE&dgr;, ICE&egr;, ICH-1
S
and Mch2&bgr;, actually function to inhibit apoptosis.
In addition to the Bcl-2 and Ced-3/ICE gene families which play a role in apoptosis in mammalian cells, it has become increasingly apparent that other gene products exist which are important in mammalian cell death and which have yet to be identified. For example, in addition to Ced-3, another
C. elegans
gene known as Ced-4 exists which is also required for programmed cell death in
C. elegans
. However, mammalian homologues of this protein remain elusive and have not yet been identified. Further, it is ambiguous as to whether other genes exist which belong to either of the above two apoptotic gene families or what role they may play in the programmed cell death pathway.
As stated previously, apoptosis plays an important physiological role in maintaining tissue homeostasis. Programmed cell death functions in physiological processes such as embryonic development, immune cell regulation and normal cellular turnover. Therefore, the dysfunction, or loss of regulated apoptosis can lead to a variety of pathological disease states. For example, the loss of apoptosis can lead to the pathological accumulation of self-reactive lymphocytes such as that occurring with many autoimmune diseases. Inappropriate loss of apoptosis can also lead to the accumulation of virally infected cells and of hyperproliferative cells such as neoplastic or tumor cells. Similarly, the inappropriate activation of apoptosis can also contribute to a variety of pathological disease states including, for example, acquired immunodeficiency syndrome (AIDS), neurodegenerative diseases and ischemic injury. Treatments which are specifically designed to modulate the apoptotic pathways in these and other pathological conditions can change the natural progression of many of these diseases.
Thus, there exists a need to identify new apoptotic genes and their gene products and for methods of modulating this process for the therapeutic treatment of human diseases. The present invention satisfies this need and provides related advantages as well.
SUMMARY OF THE INVENTION
The invention provides an isolated gene encoding Mch3, or functional fragment thereof. Also provided is an isolated nucleic acid sequence encoding Mch3 or functional fragment thereof. The gene or nucleic acid sequence can be single or double stranded nucleic acids corresponding to coding or non-coding strands of the Mch3 nucleotide sequence. An isolated Mch3 polypeptide or functional fragment thereof is also provided.


REFERENCES:
patent: 6087150 (2000-07-01), He et al.
patent: WO 96/13603 (1996-05-01), None
Cryns et al. “The Cutting Edge:Caspases in Apoptosis and Disease” in When Cells Die; A comprehensive evaluation of apoptosis and programmed cell death, (eds, Lockshin et al). New York:Wiley-Liss pges 177-210, 1998.*
P. Henkart, “Ice family protease: Mediators of all apoptotic cell death?” Immunity 4: 195-201, 1996.*
Callard et al. the Cytokine FactsBook. San Diego: Academic Press. p. 31, 1994.*
Fernandez-Alnemri et al. CPP32, a novel human apoptic protein with homology toCaenorhabditis eleganscell death protein ced-3 and mammalian interleukin- 1&bgr;-converting enzyme. J. Biol. Chem 269:30761-30764, Dec. 9, 1994.*
Barinaga, “Cell Suicide: By ICE, Not Fire,”Science 26:754-756, 1994.
Black et al., “Activation of Interleukin-1&bgr; by a Co-induced Protease,”FEBS Lett. 247:386-390, 1989.
Cerretti et al., “Molecular Cloning of the Interluekin-1&bgr; Converting Enzyme,”Science 256:97-100, 1992.
Duan et al., “ICE-LAP3, a Novel Mammalian Homologue of theCaenorhabditis elegansCell Death Protein Ced-3 Is Activated during Fas- and Tumor Necrosis Factor-induced Apoptosis,”J. Biol. Chem. 271(3):1621-1625, 1996.
Enarl et al., “Involvement of an ICE-like protease in Fas-mediated apoptosis,”Nature 375:78-81, 1995.
Fernandes-Alnemri et al., “In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains,”Proceedings of the National Academy of Sciences of the United States of America 93(15):7464-7469, 1996.
Fernandes-Alne

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mch3, a novel apoptotic protease, nucleic acids encoding and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mch3, a novel apoptotic protease, nucleic acids encoding and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mch3, a novel apoptotic protease, nucleic acids encoding and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3306324

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.