Space weather prediction system and method

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06816786

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a system and method for predicting space weather, and in particular, for predicting solar-induced disturbances of the environment of near-earth space, such as geomagnetic storms. More specifically, the invention relates to predicting space weather based on the analysis of complex patterns in solar, interplanetary, and geophysical data.
BACKGROUND OF THE INVENTION
When solar flares, disappearing filaments, and other solar events occur on the sun they create great turbulences and disturbances in the region of space close to the sun. These disturbances are often so extreme that they create shock waves which travel through space and, ultimately, arrive at the earth or at other locations of interest (e.g. a spacecraft position, a comet, or a planet), where they can cause serious problems such as loss of spacecraft, spacecraft anomalies (such as bit flips in electronic components), surface charging problems, disruption of on-board computer memories, and even damage to the structure of semi-conductor microelectronics and solar cells. The charged particles, including energetic electrons and protons, associated with these disturbances can do as much damage to solar cells and other hardware in one disturbance as several years' exposure to the undisturbed environment. For example, energetic electrons can cause large static charges, some measuring as high as 19,000 volts, to build up in insulators deep in spacecraft, which may cause arcing that damage sensitive electronic components. In addition, astronauts both inside and outside a spacecraft, space station or shuttle can be subjected to dangerous doses of protons and other types of radiation during these disturbances.
These disturbances can also cause communications blackouts at all frequencies, not only with spacecraft, but with high-flying aircraft and with ground-based objects. High frequency (HF) radio wave communication is more routinely affected since it depends on reflection from the ionosphere to carry signals great distances. Ionospheric irregularities caused by solar disturbances give rise to signal dispersion, fading, and even complete signal loss during very disturbed conditions. Ionospheric irregularities also affect the higher frequency radio waves used by telecommunication companies that penetrate the ionosphere and are relayed via satellite to other locations. The ionospheric irregularities can even prohibit critical communications such as search and rescue efforts and military operations.
One example of a serious space weather related communications failure took place in the early 1980s when President Reagan was on Air Force One on his way to China—all communications were lost with the plane for more than two hours. Mr. Reagan and his advisors were upset and concerned; they were subsequently informed that the failure was due to disturbances that originated on the sun and eventually propagated to the near earth environment.
In addition to communications systems, marine navigation systems using very low frequency signals, such as LORAN and OMEGA, depend on accurate information on the altitude of the bottom of the ionosphere. During environmental disturbances, rapid vertical changes occur in the location of this boundary, introducing significant errors of up to several kilometers in determinations of location.
Global Positioning Systems (GPS) are also sensitive to space weather disturbances. These systems have a wide variety of applications including aircraft navigation and air traffic control systems. However, because they operate by transmitting radio waves from satellites to receivers on the ground, in aircraft, or in other satellites, they are very sensitive to ionospheric disturbances. Significant errors can result when signals are reflected, refracted and slowed by disturbed ionospheric conditions.
Electric power companies are also affected by space weather disturbances because their long power lines are susceptible to electric currents induced by the dramatic changes in high-altitude ionospheric currents occurring during geomagnetic storms. Surges in power lines from ground induced currents (GICs) can cause massive network failures and permanent damage to expensive equipment. It is estimated that the March 1989 HydroQuebec power black-out, which was caused by a space weather disturbance, cut electric power to several million people.
With accurate early warning, spacecraft operators can take effective remedial action, such as phased shut downs of components where the most sensitive elements are turned off first and the other components are shut down closer to the predicted onset of the event. Other remedial actions include downloading spacecraft memory to ground-based memory; shutting down all spacecraft systems except those necessary for real-time tracking; increasing real-time monitoring of satellite operations for anomalies; delaying major changes in vehicle potential caused by turning on/off susceptible components; and calculating the best time to adjust a low earth orbit for drag. For military communications, redundant transmissions could be scheduled along with real-time human monitoring as a check of communication integrity. For space stations and shuttles, extra-vehicular activity could be curtailed, launches could be delayed or early landings planned to avoid a disturbance.
Such remedial actions are currently impractical due to the generally short lead time (approximately one hour) and overwhelming inaccuracy (over 80 percent false alarms) of space weather disturbance predictions. If operators were given an accurate warning at least several hours in advance of a space weather event, they would have a great deal more flexibility in developing and implementing strategies for protecting their spacecraft, systems, and/or astronauts. In addition, power companies could, for example, reduce the load on transmission circuits, confidently reset tripped protective relays on power networks, selectively ground capacitor banks to prevent large potential drops and delay power station maintenance and equipment replacement. Telecommunication companies could, for example, look for alternate frequencies for transmissions and effect plans to minimize communications outages.
The space weather forecasts provided by the National Oceanic and Atmospheric Administration's (NOAA's) Space Environment Center (SEC), the civilian office responsible for space weather forecasts, demonstrate the need for improvement that this invention addresses. Until several years ago, these forecasts were made entirely “by eye.” Operators would examine the raw data (primarily solar magnetic field, x-ray, and optical data) and then, based on intuition and experience, issue forecasts. According to the SEC's own statistics, only 30% of the storms that they forecast actually occurred. There are also many false negatives (i.e., times when they do not forecast storms that do occur) and the generally brief forecast horizon often does not provide sufficient time for effective remedial action.
Recently, others have attempted to generate more ‘objective’ forecasts based at least in part on solar wind and interplanetary magnetic field (IMF) data obtained from the Advance Composition Explorer (ACE) and the WIND spacecraft. Both these spacecraft are very close to the Earth (compared to the distance between the Earth and the sun) and therefore forecasts based on their measurements of solar wind and IMF have a very short lead time. Typically, these systems produce forecasts that have a lead time of one hour or less and often they are ex post facto (i.e. they generate a “prediction” after the event has already begun to disturb the geophysical environment).
Still other forecasting approaches rely upon data from solar event observations, inputting these data into various theoretical models that attempt to predict how the solar events, and their associated shock waves, will propagate through space and effect space weather. The Wang-Sheeley model, the Interplanetary Shock Propagation Model (ISPM) (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Space weather prediction system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Space weather prediction system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Space weather prediction system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3306103

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.