Radiation imagery chemistry: process – composition – or product th – Electric or magnetic imagery – e.g. – xerography,... – Radiation-sensitive composition or product
Reexamination Certificate
2003-02-19
2004-11-30
Goodrow, John L (Department: 1756)
Radiation imagery chemistry: process, composition, or product th
Electric or magnetic imagery, e.g., xerography,...
Radiation-sensitive composition or product
C430S058800, C430S059500, C430S065000, C430S124300
Reexamination Certificate
active
06824940
ABSTRACT:
RELATED PATENTS
Illustrated in U.S. Pat. No. 6,015,645, the disclosure of which is totally incorporated herein by reference, is a photoconductive imaging member comprised of a supporting substrate, a hole blocking layer, an optional adhesive layer, a photogenerator layer, and a charge transport layer, and wherein the blocking layer is comprised, for example, of a polyhaloalkylstyrene.
Illustrated in U.S. Pat. No. 6,287,737, the disclosure of which is totally incorporated herein by reference, is a photoconductive imaging member comprised of a supporting substrate, a hole blocking layer thereover, a photogenerating layer and a charge transport layer, and wherein the hole blocking layer is comprised of a crosslinked polymer derived from the reaction of a silyl-functionalized hydroxyalkyl polymer of Formula (I) with an organosilane of Formula (II) and water
wherein A, B, D, and F represent the segments of the polymer backbone; E is an electron transporting moiety; X is selected from the group consisting of halide, cyano, alkoxy, acyloxy, and aryloxy; a, b, c, and d are mole fractions of the repeating monomer units such that the sum of a+b+c+d is equal to 1; R is alkyl, substituted alkyl, aryl, or substituted aryl; and R
1
, R
2
, and R
3
are independently selected from the group consisting of alkyl, aryl, alkoxy, aryloxy, acyloxy, halogen, cyano, and amino, subject to the provision that two of R
1
, R
2
, and R
3
are independently selected from the group consisting of alkoxy, aryloxy, acyloxy, and halide.
Illustrated in U.S. Pat. No. 5,473,064, the disclosure of which is totally incorporated herein by reference, is a process for the preparation of hydroxygallium phthalocyanine Type V, essentially free of chlorine, whereby a pigment precursor Type I chlorogallium phthalocyanine is prepared by reaction of gallium chloride in a solvent, such as N-methylpyrrolidone, present in an amount of from about 10 parts to about 100 parts, and preferably about 19 parts with 1,3-diiminoisoindolene (DI
3
) in an amount of from about 1 part to about 10 parts, and preferably about 4 parts DI
3
, for each part of gallium chloride that is reacted; hydrolyzing the pigment precursor chlorogallium phthalocyanine Type I by standard methods, for example acid pasting, whereby the pigment precursor is dissolved in concentrated sulfuric acid and then reprecipitated in a solvent, such as water, or a dilute ammonia solution, for example from about 10 to about 15 percent; and subsequently treating the resulting hydrolyzed pigment hydroxygallium phthalocyanine Type I with a solvent, such as N,N-dimethylformamide, present in an amount of from about 1 volume part to about 50 volume parts, and preferably about 15 volume parts for each weight part of pigment hydroxygallium phthalocyanine that is used by, for example, ballmilling the Type I hydroxygallium phthalocyanine pigment in the presence of spherical glass beads, approximately 1 millimeter to 5 millimeters in diameter, at room temperature, about 25° C., for a period of from about 12 hours to about 1 week, and preferably about 24 hours.
Illustrated in U.S. Pat. No. 5,521,043, the disclosure of which is totally incorporated herein by reference, are photoconductive imaging members comprised of a supporting substrate, a photogenerating layer of hydroxygallium phthalocyanine, a charge transport layer, a photogenerating layer of BZP perylene, which is preferably a mixture of bisbenzimidazo(2,1-a-1′,2′-b)anthra(2,1,9-def:6,5,10-d′e′f′)diisoquinoline-6,11-dione and bisbenzimidazo(2,1-a:2′,1′-a)anthra(2,1,9-def:6,5,10-d′e′f′)diisoquinoline-10,21-dione, reference U.S. Pat. No. 4,587,189, the disclosure of which is totally incorporated herein by reference; and as a top layer a second charge transport layer.
The appropriate components and processes of the above patents may be selected for the present invention in embodiments thereof.
BACKGROUND
This invention is generally directed to imaging members, and more specifically, the present invention is directed to single and multi-layered photoconductive imaging members with a hole blocking or undercoat layer (UCL), a photogenerating layer, a charge transport layer, and an overcoating layer of, for example, a component with a low dielectric constant, such as from about or less than 2.5, and more specifically, a dielectric constant of from about 1 to about 2.5, and yet more specifically, from about 1.5 to about 2.3.
More specifically, the top layer of the imaging member of the present invention is comprised of a polymeric component with a low dielectric constant, examples of this component being poly(phenylene ether) (PPE), poly(cyclo olefin) (PCO), polyesters, polyamides, fluorinated polymers, and polyolefins with no ring structures present on the main polymeric chain, and charge transport molecules. The weight ratio of the polymer and charge transport molecules can be, for example, from about 30/70 to about 80/20. The polymer in embodiments possesses a glass transition temperature of from about 80° C. to about 260° C. (degrees Centigrade). Specific examples of PPE polymers are VESTORAN 1900™, a poly-2,6-dimethyl-1,4-phenylene ether polymer, available from Degussa, (temperature of deflection at 0.45 MPa load equal to 185° C. as determined with the known ASTM D648 testing method, and dielectric constant equal to 2 as determined with the known ASTM D150 at 1 MHz testing method), NORPEX AX290 PPE™, available from Ebbtide Polymers Corporation (temperature of deflection at 1.8 MPa equal to 143° C. (degrees Centigrade throughout) as determined with the known ASTM D648 testing method, and a dielectric constant equal to 2 as determined with the known ASTM D150 at 1 MHz testing method; specific examples of poly(cyclo olefin) polymers include ZEONOR 1600™, a polydicyclopentadiene polymer, available from Zeon Corporation (glass transition temperature equal to 163° C. as determined with DSC, dielectric constant equal to 2.3 as determined with ASTM D150 at 1 MHz testing method), ZEONEX E48R™, a polydicyclopentadiene polymer, available from Zeon Corporation (glass transition temperature equal to 140° C. as determined with DSC, dielectric constant equal to 2.3 as determined with the ASTM D150 at 1 MHz testing method); specific examples of polyesters include EASTAR AN004™, a poly(cyclohexylenedimethylene terephthalate) copolyester, available from Eastman Chemical (temperature of deflection at 0.45 MPa load equal to 103° C. as determined with the ASTM D648 testing method; dielectric constant equal to 2.1 as determined with the ASTM D150 at 1 MHz testing method); examples of polyamides include VESTAMIDE L1940™, a nylon 12, available from Creanova Inc. (temperature of deflection at 0.45 MPa load equal to 110° C. as determined with the ASTM D648 testing method; dielectric constant equal to 2 as determined with the ASTM D150 at 1 MHz testing method); examples of fluorinated polymers include DuPont 4100 FEP, a fluorinated ethylene propylene polymer (melting temperature equal to 259° C.; dielectric constant equal to 2 as determined with the ASTM D150 at 1 MHz testing method); examples of polyolefins with no ring structures on the main polymeric chain include VESTYRON 325™, a polystyrene, available from Creanova Inc. (glass transition temperature equal to 89° C. as determined with DSC; dielectric constant equal to 2 as determined with ASTM D150 at 1 MHz testing method), NOVOLEN 1102J™, a polypropylene, available from BASF (Viscat softening temperature equal to 92° C.; dielectric constant equal to 2.3 as determined with the ASTM D150 at 1 MHz testing method). The thickness of the overcoat layer in embodiments can be, for example, from about 0.1 micron to about 25 microns, more specifically from about 1 micron to about 10 microns, and yet more specifically from about 1 micron to about 5 microns.
In embodiments the hole blocking layer in contact with the supporting substrate can be situated between the supporting substrate and the photogenerating layer, which is comprised, for
Chen Cindy C.
Lin Liang-Bih
Silvestri Markus R.
Wu Jin
Goodrow John L
Palazzo E. O.
Xerox Corporation
LandOfFree
Photoconductive imaging members does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Photoconductive imaging members, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photoconductive imaging members will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3306030