Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
2001-05-21
2004-12-21
Kunz, Gary (Department: 1647)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C514S04400A, C514S045000, C530S385000, C530S395000, C530S399000
Reexamination Certificate
active
06833351
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a new use for Erythropoetin (“EPO”), such as EPO alpha, for treating hepatitis C and/or anemia caused by hepatitis C treatment. Accordingly, the invention involves using EPO with hepatitis C treatment, such as Ribavirin (“RBV”) and/or interferon such as alpha-interferon (“&agr;-IFN” or “IFN”); and thus, the invention pertains to methods involving administration of EPO, RBV and &agr;-IFN, or EPO and RBV, and compositions
Various documents are cited herein, e.g., in the text and/or in a reference section. There is no admission that any of the various documents cited in this text are prior art as to the present invention. Any document having as an author or inventor person or persons named as an inventor herein is a document that is not by another as to the inventive entity herein. All documents cited in this text (“herein cited documents”) and all documents cited or referenced in herein cited documents are hereby incorporated herein by reference. All specifications, manufacturer's data sheets, and the like for products referenced herein, and all documents cited therein, are hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION
Erythropoietin (“EPO”) is one of the red blood cell stimulating factors in the human body. Recombinant technology has made manufacture of this stimulating factor colony possible and its use in treating anemia caused by cancer chemotherapy, acquired immune deficiency syndrome (“AIDS”) and renal failure. The recombinant product has been shown to be biologically identical to human erythropoietin.
A normal response to anemia in humans is the release of EPO and a corresponding rise in the hemoglobin level. There can be either an inadequate production of EPO or a lack of response to EPO by the bone marrow. When ribavirin is administered by itself, it gets pumped into red blood cells and, once inside, gets phosphorylated. After it is phosphorylated, the ribavirin cannot get out of the red blood cell and its concentration builds up until the red blood cell bursts (hemolysis). This anemia can be severe and even life threatening, particularly in people with heart disease. The normal response to a hemolytic anemia is the release of EPO which stimulates the bone marrow to produce more red blood cells, and immature red blood cells (reticulocytes) will be discovered in the peripheral blood smear. When interferon is administered with ribavirin, however, it blocks the normal response of the bone marrow to respond to the anemia and the reticulocyte response is blunted. Administration of exogenous EPO such as Epoetin alpha can overcome this response and cause the bone marrow to produce more red blood cells, overcoming the inhibitory effect of the interferon.
Recently, great importance has been placed on using ribavirin to eradicate hepatitis C. Hepatitis C, according to the Centers for Disease Control (“CDC”), afflicts over 3.9 million people in the United States today. Cirrhosis and liver failure caused by hepatitis C are the leading causes of liver transplant in the U.S. today. It is also an important global problem with as many as 50 million people afflicted with hepatitis C worldwide. The combination of interferon and ribavirin has been an approved treatment for hepatitis C since 1998. The addition of ribavirin has more than doubled the effect of the treatment to the hepatitis C virus. Clinical data from recent licensing trials shows that patients who receive at least 10.6 mg/kg of ribavirin have a sustained virologic response rate of over 40%, whereas those receiving less than that amount have a SVR (response) rate of only 28%. The maximum benefit is gained from a dose of ribavirin that is about 13 mg/kg. Such high doses of ribavirin cause a substantial increase of almost 50% in the incidence of anemia. The normal management of this would be to reduce the ribavirin dose and thereby reduce the efficacy of the interferon/ribavirin combination therapy. However, this would defeat the purpose of the hepatitis C treatment.
With respect to treating anemia caused by hepatitis C treatment in conjunction with ribavirin, reference is made to the following:
Albrecht, U.S. Pat. No. 6,172,046 B1, relates to a method of treating a patient having chronic hepatitis C infection. To eradicate detectable hepatitis C virus RNA, a combination therapy using a therapeutically effective amount of ribavirin and a therapeutically effective amount of interferon-alpha for a time period of from 20 up to 80 weeks is disclosed.
Draper, U.S. Pat. No. 5,610,054, relates to an enzymatic RNA molecule which cleaves RNA of the hepatitis C virus. Draper, U.S. Pat. No. 5,869,253, relates to an enzymatic RNA molecule which cleaves RNA encoding hepatitis C virus (“HCV”) RNA, wherein the enzymatic RNA molecule comprises a substrate binding site and a nucleotide sequence within or surrounding the substrate binding site wherein the nucleotide sequence imparts to the enzymatic RNA molecule activity for the cleavage of the HCV RNA. Draper, U.S. Pat. No. 6,132,966, relates to an enzymatic nucleic acid molecule which inhibits hepatitis C virus replication.
Ise et al., U.S. Pat. No. 5,399,551, relates to an enhancer for antianemia effect of erythropoietin using a spherical carbon as an active ingredient in an amount effective for treating anemia in combination with erythropoietin. The enhancer is orally administered. The antianemia effect of erythropoietin can be enhanced, the dosage of erythropoietin can be decreased, and side effects from erythropoietin can be reduced. The invention further discloses a method of augmenting the anti-anemia effect of Erythropoetin by administering to a patient an effective amount of a spherical carbon in combination with a portion of an effective amount of Erythropoetin for treating anemia.
Population Pharmacokinetic and Pharmacodynamic Analysis of Ribavirin in Patients with Chronic Hepatitis C
, by J. Frank Jen, Paul Glue, Samir Gupta, Demetrius Zambas and Gerald Hajian (Therapeutic Drug Monitoring, Vol. 22, No. 3, 2000) (“Population”), reported that
“Athough anemia is a well-established adverse effect of ribavirin therapy, the association between drug concentrations and extent of anemia has not been thoroughly investigated. Earlier reports (22, 23) found that greater mean falls in hemoglobin were associated with higher daily ribavirin doses.
Despite the mean trends the variability of these data was high, suggesting that it would not be possible to establish a concentration range below which hemolysis would not occur, or above which anemia was inevitable. From a practical perspective, the most appropriate method of dealing with treatment related anemia would appear to be through dose reduction of ribavirin, although this analysis indicates that this should be based on individual hemotologic responses to ribavirin rather than based on serum ribavirin concentrations.”
Thus, there is teaching in the art to reduce RBV—reduce the HCV treatment—to address anemia. Teachings such as this teach away from addressing anemia by other means and therefore teach away from the present invention.
Poduslo et al., U.S. Pat. No. 5,604,198, relates to a method of enhancing an ability of a neurologically active compound to penetrate the blood nerve barrier (“BNB”) or blood brain barrier (“BBB”), by administering a conjugate comprising the neurologically active compound linked to a carrier molecule that has been shown to have a substantial permeability coefficient across the BNB and BBB. Poduslo et al., U.S. Pat. No. 5,670,477, relates to a method of enhancing the ability of a neurologically active compound to penetrate the blood nerve barrier (“BNB”) or blood brain barrier (“BBB”) comprising parenterally administering to a mammal in need of treatment with the neurologically active compound, a conjugate consisting of an effective amount of the neurologically active compound linked to a polyamine having a substantial permeability coefficient across the BNB or BBB.
Strickland, U.S. Pat. No. 5,661,125, relates to stable compositi
DeBerry Regina M.
Frommer & Lawrence & Haug LLP
Kunz Gary
LandOfFree
Method of treating anemia caused by ribavirin treatment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of treating anemia caused by ribavirin treatment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating anemia caused by ribavirin treatment of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3305449