Process for producing acrolein and acrylic acid

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C562S534000, C562S536000, C562S544000, C562S546000, C562S548000, C562S600000

Reexamination Certificate

active

06781013

ABSTRACT:

TECHNICAL FIELD TO WHICH THE INVENTION BELONGS
This invention relates to a process for producing acrolein and acrylic acid. More specifically, the invention relates to a process for producing acrolein and acrylic acid by oxidizing propylene at vapor phase in the presence of a molybdenum-bismuth-containing oxidation catalyst.
Prior Art
It has been industrially widely practiced to oxidize propylene at vapor phase with molecular oxygen or molecular oxygen-containing gas in the presence of a molybdenum-bismuth-containing oxidation catalyst, using a fixed bed shell-and-tube reactor.
Because this vapor-phase oxidation is a highly exothermic reaction, a hot spot is apt to form in the catalyst layer in each reaction tube. Occurrence of the hot spots causes over-oxidation to reduce yield of acrolein and acrylic acid. Also the excessive heat generation at the hot spots deteriorates the catalyst, rendering it impossible to carry out the oxidation reaction over a prolonged period with stability. In particular, the problems of hot spots become more notable when the propylene concentration in the inlet gas is increased or the space velocity is raised for higher productivity. For inhibiting occurrence of hot spots, there have been a number of proposed methods.
For example, Japanese Patent Kokai (laid-open) Sho 55 (1980)-113730 discloses a method comprising preparing plural molybdenum-bismuth-containing oxidation catalysts which exhibit different activity levels, by varying the kind and/or amount of the metals (K, Rb, Cs or Tl) constituting the D-component of said catalysts and sequentially charging the reaction tubes with the plural catalysts in such a manner that the catalytic activity should increase from the starting gas inlet side toward the outlet side. According to such a method, however, the plural kinds of the catalysts exhibiting different activity levels cannot be prepared with good reproducibility because the content of the D-component is less than those of the other components. Again, although it was advocated that the method enabled to increase the propylene concentration in the starting gas, the actually used propylene concentration in the starting gas to verify the effect of the method by working examples was 8 volume % (cf. Example 7).
Japanese Patent Kokai Hei 8 (1996)-3093 describes a method of charging the reaction tubes sequentially with plural kinds of catalysts of different activity levels which are prepared by varying their calcining temperature, in such a manner as to increase the activity from the starting gas inlet side toward the outlet side. While it is possible to control the activity level by calcination according to said method, the temperature distribution inside of those ovens which are normally used for the calcination is not uniform and there is the possibility that preparation of plural kinds of catalysts of different activity levels with good reproducibility may become difficult, particularly when the catalysts are to be prepared in large amounts. Again, while the suitable propylene concentration in the starting gas according to said method is said to range 3-15 volume %, the actual concentration whose effect has been actually confirmed by working examples was 7.4 volume %.
Furthermore, Japanese Patent Kokai Hei 4 (1992)-217932 proposes a method for inhibiting occurrence of hot spots or heat accumulation at the hot spots, by preparing plural kinds of the catalysts having differing occupying volumes and filling the reaction tubes sequentially with the catalysts of less occupying volume from the starting gas inlet side toward the outlet side. According to said method, however, the occupying volumes of the catalysts are limited by the diameter of each reaction tube, and occasions will occur where filling of desired plural kinds of catalysts in the reaction tubes is difficult. This method, therefore, is not yet fully satisfactory as to inhibition of occurrence of hot spots.
OBJECT OF THE INVENTION
The object of the invention is to provide an industrially advantageous production process of acrolein and acrylic acid, which can more effectively inhibit occurrence of hot spots in the reaction zone or heat accumulation at the hot spots, compared to those prior art techniques, in particular, where the propylene concentration in starting gas is high.
MEANS TO ACHIEVE THE OBJECT
We have discovered, for achieving the above object by a production process of acrolein and acrylic acid through vapor phase catalytic oxidation of propylene in the presence of a molybdenum-bismuth-containing oxidation catalyst which is expressed by a general formula (1):
Mo
a
W
b
Bi
c
Fe
d
A
e
B
f
C
g
D
h
E
i
O
x
(The symbols in the formula are as defined later), that (&agr;) occupying volume: (&bgr;) calcining temperature; and (&ggr;) kind and/or amount of alkali metal element, of the catalyst must satisfy certain specific conditions.
Thus, according to the invention, a process for producing acrolein and acrylic acid through vapor phase catalytic oxidation of propylene with molecular oxygen or molecular oxygen-containing gas using a fixed bed shell-and-tube reactor is provided, which process comprises preparing plural kinds of catalysts which are formed of complex oxides of the composition expressed by a general formula (1):
Mo
a
W
b
Bi
c
Fe
d
A
e
B
f
C
g
D
h
E
i
O
x
  (1)
(wherein Mo is molybdenum; W is tungsten; B is bismuth; Fe is iron; A is at least an element selected from cobalt and nickel; B is at least an element selected from phosphorus, tellurium, arsenic, boron, antimony, tin, cerium, niobium, lead, chromium, manganese and zinc; C is at least an element selected from alkali metal elements; D is at least an element selected from alkaline earth metal elements; E is at least an element selected from silicon, aluminum, titanium and zirconium; and O is oxygen: a, b, c, d, e, f, g, h, i and x denote the atomic numbers of Mo, W, Bi, Fe, A, B, C, D, E and 0, respectively, and where a is 12, b is 0-5, c is 0.1-10, d is 0.1-10, e is 1-20, f is 0-5, g is 0.001-3, h is 0-3, i is 0-30, and x is a numerical value which is determined depending on the extent of oxidation of each of the elements)
and which are different from each other in
(&agr;) occupying volume,
(&bgr;) calcining temperature and/or
(&ggr;) kind and/or amount of the alkali metal element, and filling the reaction zones provided by dividing the catalyst layer in each of the reaction tubes in the fixed bed shell-and-tube reactor into at least two layers in the axial direction of the tube, sequentially with said plural kinds of catalysts in such a manner that the catalytic activity increases from the starting gas inlet side toward the outlet side.
This invention concerns an improvement in the invention which is described in the earlier cited Japanese Patent Kokai Hei 4 (1992)-217932. The improvement resides in the use of plural kinds of catalysts exhibiting different activity levels, which are obtained by varying not only the catalyst's occupying volumes but also the calcining temperatures and/or the kind and/or amount of alkali metal element therein. As the result, occurrence of hot spots or accumulation of heat at the hot spots are more effectively inhibited and the propylene concentration in the starting gas can be increased. According to the invention, furthermore, the desired plural catalysts of different activity levels can be prepared with better reproducibility than that in the conventional methods.
The level of “activity” as referred to in the present invention is evaluated by conversion of propylene.
MODE OF WORKING THE INVENTION
The molybdenum-bismuth-containing oxidation catalysts which are represented by the general formula (1) are known. For example, Japanese Patent Kokai Sho 50 (1975)-13308 and Sho
50-47915
taught the catalysts containing as essential components Mo, Bi, Fe, Sb, Ni and additionally at least one element selected from K, Rb and Cs. Japanese Patent Kokai Sho 64 (1989)-56634 taught the catalysts containing as essential components Mo, Bi, Fe and additionally at least either one of Ni and Co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for producing acrolein and acrylic acid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for producing acrolein and acrylic acid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for producing acrolein and acrylic acid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304917

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.