Illumination – Revolving
Reexamination Certificate
2001-12-05
2004-12-07
Sember, Thomas M. (Department: 2875)
Illumination
Revolving
C362S339000, C362S330000
Reexamination Certificate
active
06827456
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to transreflectors that reflect a greater portion of the light that strikes one side of the transreflectors and transmit a greater portion of the light that strikes the other side of the transreflectors or vice versa. Also, this invention relates to different methods of making transreflectors.
BACKGROUND OF THE INVENTION
A transreflector is an optical device that transmits part of the light that strikes it and reflects part of the light that strikes it. An example of a transreflector is a beam splitter or half-silvered mirror. Consider the light intensity that strikes a given side of a transreflector, by conservation of energy, the sum of the light intensity that is (i) transmitted through the transreflector, (ii) reflected by the transreflector and (iii) absorbed by the transreflector must equal the original intensity striking that side. If one desires to construct a transreflector that transmits as much of the light striking one side of the device as possible while also reflecting as much of the light striking the opposite side of the device as possible, a beam splitter type transreflector device is theoretically limited to 50% light transmission and 50% light reflection assuming that the intensity of the light absorbed by the device is zero. Since it is not physically possible to create a transreflective device that has zero light absorption, a beam splitter type transreflector device that attempts to both transmit and reflect the maximum amount of light incident on the device will be limited to less than 50% transmission and less than 50% reflection.
Transreflectors may be used, for example, with liquid crystal displays (LCDs), used in laptop computers, personal digital assistant devices (PDA), word processors, avionic displays, cell phones and the like to permit the displays to be illuminated in dark environments by a backlight and in lighted environments by ambient light without the need to power the backlight. This is done, for example, by placing the transreflector between the backlight and the LCD. In lighted environments a portion of the ambient light passes through the display and a portion of this light is then reflected by the transreflector back through the LCD to illuminate the display. In dark environments, a portion of the light from the backlight is transmitted through the transreflector and through the LCD to illuminate the display.
In order to make the display as bright as possible in both lighted and dark environments, the ideal transreflector would transmit 100% of the light from the backlight striking it from below and reflect 100% of the ambient light striking it from above. Optical losses in the transreflective device, absorption for example, make it impossible to obtain 100% transmittance of light striking the transreflector from below and 100% reflection of light striking the transreflector from above. However, it is desirable to be as close to 100% transmittance and 100% reflection as practically possible.
Beam splitter type transreflectors treat light striking the top surface from above and light striking the bottom surface from below the same, and are limited to less than 50% for both transmission and reflection of light striking a surface of these devices. Therefore, beam splitter type transreflective devices are limited to transmitting less than 50% of the light from the backlight striking them from below and reflecting less than 50% of the ambient light striking them from above, which falls far short of the ideal 100% transmission from below and 100% reflectance from above needed to make a display as bright as possible.
In order to make displays as bright as possible, there is a need for transreflective devices which treat light striking them from above differently than light striking them from below. In addition these transreflectors should transmit as much of the light that strikes them from below as possible (e.g., greater than 50%), and reflect as much of the light that strikes them from above as possible (e.g., greater than 50%).
SUMMARY OF THE INVENTION
The present invention relates to transreflectors, transreflector systems and displays and methods of making transreflectors that reflect more of the light that strikes one side of the transreflectors and transmit more of the light that strikes the opposite side of the transreflectors.
In one form of the invention, the transreflector comprises a transparent substrate (which may be a film or plate) having a pattern of optical deformities possessing reflective and non-reflective light transmissive surfaces on or in one side of the substrate. The term “transparent” as used throughout the specification and claims means optically transparent or optically translucent. The transreflector may also comprise two or more substrate/film layers that have been bonded together with the optical deformities on outer surfaces of the outermost layers. These optical deformities may comprise grooves or individual optical deformities of well defined shape. Also, the size, height, shape, position, angle, density, and/or orientation of the optical deformities may vary across the substrate. The reflective surfaces are coated with a reflective coating that may comprise a polarization coating. The transmissive surfaces may be textured, lensed or have optical shapes to redirect light, and may also have an optical coating such as an antireflective or polarization coating. The pattern of reflective and non-reflective light transmissive surfaces may be on the top side of the substrate (i.e., the surface nearest the LCD) or the bottom side of the substrate (i.e., the surface nearest the backlight). The reflective and transmissive surfaces may vary in size, shape, angle, density and orientation.
In the case where the pattern of reflective and non-reflective surfaces are on the top side of the transreflector, the other side or bottom of the transreflector may either be planar or have optical shapes designed to better transmit a certain distribution of light, for example the output distribution of a backlight, and may in addition direct this light to the light transmissive surfaces. These optical deformities may comprise grooves or individual optical deformities of well defined shape. Also, the size, height, shape, position, angle, density, and/or orientation of the optical deformities may vary across the transreflector. An optical coating such as an antireflective or polarization coating may also be applied to the bottom of the transreflector in addition to or in place of the optical deformities.
In the case where the pattern of reflective and non-reflective surfaces are on the bottom side of the transreflector, the other side or top of the transreflector may either be planar or have optical deformities to redirect light. For example, the top side of the transreflector may have optical shapes which redirect light transmitted through the transreflector more toward the normal direction of the LCD so that more light from the transreflector is transmitted through the LCD. These optical deformities may comprise grooves including but not limited to prismatic or lenticular grooves, or individual optical deformities of well defined shape. Also, the size, shape, angle, density, and orientation of the optical deformities may vary across the transreflector. The top surface of the transreflector may also be textured or have an optical coating such as an antireflective or polarization coating.
Such a transreflector may be made by applying a reflective coating to one side of a transparent substrate and then thermoforming such one side to provide a plurality of spaced angled reflective coated surfaces and a plurality of angled non-coated light transmissive surfaces. The angles of both the reflective and non-reflective light transmissive surfaces may be chosen to optimize performance. Also, optical deformities may be formed on the other side of the substrate.
Alternatively, such a transreflector may be made by thermoforming one side of a transparent substrate to produce a plurality of spaced a
McCollum Timothy A.
Parker Jeffery R.
Renner , Otto, Boisselle & Sklar, LLP
Sember Thomas M.
Solid State Opto Limited
LandOfFree
Transreflectors, transreflector systems and displays and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Transreflectors, transreflector systems and displays and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transreflectors, transreflector systems and displays and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3304274