Rotary kiln heat exchanger and method of assembling same

Heating – Tumbler-type rotary - drum furnace – Having structure agitating or controlling the motion of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C432S119000

Reexamination Certificate

active

06688884

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to rotary kilns, and more particularly relates to heat exchangers installed in rotary kilns.
BACKGROUND INFORMATION
Rotary kilns are long, slightly inclined cylinders used for processing materials such as lime, limestone, dolomite, magnesite, petroleum coke and cement. The material to be treated is introduced at the higher end and heated air flowing counter-current to the material is introduced at the lower end. Rotary kilns generally operate on a twenty-four hour basis for several months between scheduled down periods.
Rotary kilns typically have a refractory brick interior and a steel shell exterior, and some have at least one heat exchanger. The heat exchanger divides the cross section of the kiln into three or more segments to enhance the heat transfer from the gas to the material and improve mixing of the material. A three-segment heat exchanger comprises three spokes or legs which extend from the axial center of the kiln to locations equally spaced around the interior circumference of the steel shell. Commercially available three-segment heat exchangers have been sold under the trademark Trefoil®.
Rotary kiln heat exchangers encounter harsh operating conditions. For example, internal gas temperatures may typically be 1,000 to 3,000° F. in a highly basic atmosphere in a rotary lime kiln, although temperatures outside of this range are possible depending on the particular application. The heat exchanger must take the structural loading and erosion, e.g., from several hundred tons per day of partially calcined rock that slides across or falls against the surfaces of the heat exchanger. Furthermore, the heat exchanger rotates continuously with the kiln, which subjects the components of the heat exchanger to varying compressive and tensile forces. The heat exchanger must also withstand the kiln shell deflection upon revolution over its roller supports.
Conventional rotary kiln heat exchangers are typically from 8 to 16 feet long along the longitudinal kiln axis, depending on the kiln diameter and other parameters, and have spokes or legs typically from 9 to 13.5 inches thick. The heat exchangers are usually formed from individual refractory bricks, although some have been formed in-situ from refractory materials which are cast and cured inside the kiln. Installation of conventional brick heat exchangers is labor-intensive and requires specially skilled artisans. The bricks also require complicated forms specific to a single rotary kiln size to support them during construction. Thus, brick heat exchangers are slow to install and are expensive. In-situ cast refractory heat exchangers also suffer from disadvantages such as premature wear, complicated forms and slower installation than brick.
Some examples of rotary kiln heat exchanger designs are disclosed in U.S. Pat. No. 3,030,091 to Wicken et al., U.S. Pat. No. 3,036,822 to Andersen, U.S. Pat. No. 3,169,016 to Wicken et al., U.S. Pat. No. 3,175,815 to Wicken et al., U.S. Pat. No. 4,846,677 to Crivelli et al, U.S. Pat. No. 5,330,351 to Ransom et al. and U.S. Pat. No. 6,257,878 to Marr et al.
Despite these prior designs, a need still exists for a rotary kiln heat exchanger that is relatively fast and simple to install, and can withstand the harsh operating conditions of rotary kilns for extended periods of time. The present invention has been developed in view of the foregoing, and to address other deficiencies of the prior art.
SUMMARY OF THE INVENTION
An aspect of the present invention is to provide a precast monolithic rotary kiln heat exchanger hub comprising at least one recessed surface configured for engagement with a heat exchanger leg.
Another aspect of the present invention is to provide a rotary kiln heat exchanger hub comprising at least one portion configured for interlocking engagement with a heat exchanger leg, and at least one portion configured for slidable engagement with another heat exchanger leg.
A further aspect of the present invention is to provide a rotary kiln heat exchanger assembly comprising a heat exchanger hub including recesses, and heat exchanger legs received in the heat exchanger hub recesses.
Another aspect of the present invention is to provide a rotary kiln heat exchanger assembly comprising a heat exchanger hub, at least one precast heat exchanger leg interlocked with the trefoil hub, and at feast one precast heat exchanger leg slidably mounted in the trefoil hub.
A further aspect of the present invention is to provide a precast rotary kiln heat exchanger leg comprising an end configured for engagement with a heat exchanger hub.
Another aspect of the present invention is to provide a precast rotary kiln heat exchanger leg comprising a recess and/or protrusion extending along a side surface of the leg for engagement with a protrusion and/or recess of an adjacent heat exchanger leg.
A further aspect of the present invention is to provide a precast rotary kiln heat exchanger leg comprising an end including at least one recess or protrusion for engagement with an interior wall of a rotary kiln.
Another aspect of the present invention is to provide a precast rotary kiln heat exchanger leg comprising an end including means for adjusting the radial location of the heat exchanger in a rotary kiln.
A further aspect of the present invention is to provide a precast rotary kiln heat exchanger leg comprising a flared end for installation adjacent to an interior wall of a rotary kiln.
Another aspect of the present invention is to provide a rotary kiln comprising a refractory lining in the kiln, and a heat exchanger assembly in the kiln including precast heat exchanger legs and a central heat exchanger hub.
A further aspect of the present invention is to provide a rotary kiln comprising a refractory lining in the kiln, and a heat exchanger assembly in the kiln. The heat exchanger assembly includes a heat exchanger hub comprising recesses, and heat exchanger legs received in the heat exchanger hub recesses.
Another aspect of the present invention is to provide a method of installing a heat exchanger in a rotary kiln. The method comprises the steps of providing precast heat exchanger legs, providing a precast heat exchanger hub, and assembling the precast heat exchanger legs and precast heat exchanger hub in the rotary kiln.
A further aspect of the present invention is to provide a method of installing a heat exchanger in a rotary kiln. The method comprises positioning first and second heat exchanger legs in the kiln at initial positions, installing a hub between the first and second legs by moving the first and second legs from their initial positions to installed positions in which the first and second legs are engaged with the hub, and installing a third heat exchanger leg by engaging the third heat exchanger leg with the hub.
These and other aspects of the present invention will be more apparent from the following description.


REFERENCES:
patent: 3036822 (1962-05-01), Andersen
patent: 3227430 (1966-01-01), Vaughan, Jr.
patent: 5330351 (1994-07-01), Ransom, Jr. et al.
patent: 6257878 (2001-07-01), Marr et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotary kiln heat exchanger and method of assembling same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotary kiln heat exchanger and method of assembling same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary kiln heat exchanger and method of assembling same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3303294

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.