Syringe assembly

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S187000

Reexamination Certificate

active

06743216

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to syringe assemblies and more particularly concerns syringe assemblies for use in I.V. flush procedures.
An I.V. catheter is a commonly used therapeutic device. Many patients, in accordance with their therapy, have an I.V. catheter connected to a vein ready for use in various procedures or in fluid communication with an I.V. system for infusing liquids and medication. Many I.V. sets have I.V. ports which are in fluid communication with a catheter and allow access for the purpose of injecting medication into the patient, and for use in flushing techniques to maintain catheter patency and integrity. Healthcare facilities have flushing protocols which depend on the amount of time the catheter will remain in the patient and the type of catheter being used. For example, a peripherally inserted central catheter (PICC) is a long flexible catheter, which is typically inserted into the central venous system (optimally with the tip terminating in the superior vena cava) via the superficial veins of the antecubital fossa. PICC lines are designed for use when intermediate or long-term therapy is prescribed. These catheter lines must be periodically flushed with saline flush solution and/or heparin lock flush solution depending on the protocol. Among other things, flushing saline solution removes blood from the catheter and heparin helps prevent the formation of future blood clots. The most common I.V. ports are covered by pierceable septums or pre-slit septums and are known in the art and sometimes referred to as “PRN” from the Latin pro re nata meaning “as the need arises”. The septum is preferably made of rubber or another elastomeric material which permits insertion of a sharp needle cannula in order to infuse fluids into or to withdraw fluids from the catheter. Upon withdrawal of the needle cannula the septum seals itself. Ports having pre-slit septums are used with blunt cannula. Typically, the blunt cannula is attached to a syringe and the syringe is moved to place a gentle pressure on the pre-slit septum which is forced open by the blunt cannula to establish fluid communication. Also, some I.V. sets have access valves which are responsive to the frusto-conically shaped tip of a syringe barrel for allowing fluid communication between the interior of the syringe and the catheter.
Catheters are flushed using syringe assemblies filled with various fluids. In some cases, different fluids are injected sequentially in accordance with the protocol. For example, a saline solution followed by an anticoagulant such as heparin. The size of the syringe used to flush I.V. lines varies by various factors including the size and length of the catheter. Typically syringes of 1 ml, 3 ml, 5 ml and 10 ml volume are used. A commercially available 1 ml syringe may have a barrel inside diameter of approximately 6.6 mm (0.26 inch), a 3 ml syringe may have a barrel inside diameter of approximately 8.6 mm (0.34) inch while a 10 ml syringe may have a barrel inside diameter of approximately 14.5 mm (0.57 inch). Unfortunately, during the flushing of vascular access devices, different nominal size syringes generate substantially different pressures in the solution being injected by the same force being applied to the syringe plunger rod. For example, a ten-pound force on the plunger rod may cause a 10 ml syringe to generate 40 psi of liquid pressure while a 3 ml syringe generates 110 psi and a 1 ml syringe generates 190 psi.
Control of pressure is very important during flush procedures for detection of resistance to flow or catheter occlusion, and to avoid over-pressure because of the danger of dislodging a clot or rupturing the catheter. Accordingly, many practictioners are believed to prefer the 10 ml size syringe because when using the 10 ml syringe it is easier to observe possible catheter occlusion and it is less likely to provide excessive pressures which could dislodge a blood clot or damage the catheter.
Also, it is important in the flush procedure not to draw blood back into the catheter where it can clot and seal the catheter. In order to prevent blood reflux into the catheter the user is encouraged to maintain a positive pressure in the line during the flush procedure. This may involve slowly withdrawing the syringe and cannula from the I.V. port while still applying pressure to the syringe plunger rod. When using a syringe with an elastomeric stopper, if the stopper is compressed by action of the plunger rod, release of the plunger rod causes the stopper to expand and may cause blood to enter the catheter line.
Although a wide variety of catheters and I.V. ports can be adequately flushed using currently available syringe assemblies, there is still a need for simple, straight forward easy-to-manufacture syringe assemblies which eliminate the substantial pressure variations possible with the present syringes and minimize the potential for accidentally drawing blood in the catheter during the flush procedure.
SUMMARY OF THE INVENTION
A syringe assembly comprises a syringe barrel having an elongated body defining a chamber for retaining fluid, an open proximal end, a distal end and a frusto-conically shaped tip extending from the distal end having a tip passageway therethrough in fluid communication with the chamber. The chamber has an inside diameter of at least 13.5 mm (0.53 inch). The chamber has a distal end defined by a distal wall through which the passageway passes. A stopper is in fluid communication with the inside of the barrel. An elongated rigid plunger rod extends proximally from the stopper through, the open proximal end of the barrel and contains a flange at its proximal end. The flange is shaped and positioned to limit the distal motion of the plunger rod in the barrel by contacting the proximal end of the barrel. A tip cap is releasably connected to the tip for sealing the passageway and the chamber contains injectable liquid.
In another embodiment the stopper and the plunger rod are dimensioned so that when the plunger rod flange contacts the proximal end of the barrel there is a space between at least a portion of the distal end of the stopper and the distal wall of the syringe barrel.
In another embodiment, a syringe assembly comprises a syringe barrel having an elongated body defining a chamber for retaining fluid, an open proximal end, a distal end and a frusto-conically shaped tip extending from the distal end and having a tip passageway therethrough in fluid communication with the chamber. The chamber has an inside diameter of at least about 13.5 mm (0.53 inch). The chamber has a distal end defined by a distal wall through which the passageway passes. The length of the chamber is no more than about 57 mm (2.25 inches). A stopper is in fluid-tight communication with the inside of the barrel. An elongated plunger rod extends proximally from the stopper through the open proximal end of the barrel. In this embodiment the plunger rod does not necessarily have a flange on its proximal end, and the plunger rod flange does not necessarily limit the distal motion of the plunger rod in the barrel.


REFERENCES:
patent: 2452591 (1948-11-01), Poux
patent: 2860635 (1958-11-01), Wilburn
patent: 3380489 (1968-04-01), Harautuneian
patent: 3930492 (1976-01-01), Hatsuno et al.
patent: 3987930 (1976-10-01), Fuson
patent: 4044757 (1977-08-01), Mc Whorter et al.
patent: 4826483 (1989-05-01), Molnar, IV
patent: 4906231 (1990-03-01), Young
patent: 4915692 (1990-04-01), Verlier
patent: 5085640 (1992-02-01), Gibbs
patent: 5090962 (1992-02-01), Landry, Jr. et al.
patent: 5116320 (1992-05-01), Lo Duca
patent: 5211629 (1993-05-01), Pressly et al.
patent: 5242405 (1993-09-01), Howe
patent: 5304138 (1994-04-01), Mercado et al.
patent: 5308322 (1994-05-01), Tennican et al.
patent: 5322515 (1994-06-01), Karas et al.
patent: 5370620 (1994-12-01), Shonfeld
patent: 5395339 (1995-03-01), Talonn et al.
patent: 5496288 (1996-03-01), Sweeney
patent: 5593387 (1997-01-01), Rupp
patent: D383205 (1997-09-01), Pagay et al.
patent: 5807343 (1998-09-01), Tucker et al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Syringe assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Syringe assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Syringe assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3301269

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.