Method and device for offset-voltage free voltage...

Electricity: measuring and testing – Measuring – testing – or sensing electricity – per se – With rotor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S765010

Reexamination Certificate

active

06812689

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a method and a device for measuring/adjusting a voltage of an internal reference voltage source of an integrated semiconductor circuit, in particular, of a dynamic semiconductor memory. The reference voltage to be measured is compared by a comparator with a comparison voltage supplied from the outside, and the measurement result is formed in accordance with the result of the comparison.
German Patent DE 199 60 244.1 describes a configuration for trimming reference voltages in semiconductor chips.
In particular, in the case of integrated memory modules, for example, dynamic semiconductor memories (DRAMs) it is necessary to adjust or trim the setpoint voltage of voltage generators located on the chip, which fluctuates due to fabrication tolerances. According to the current state of the art in circuit technology, it is not possible to make available such voltage on the chip with greater precision than ±10% without an adjusting or trimming procedure.
However, before such a trimming or adjusting procedure can be carried out, the chip-internal reference voltage must be measured.
In order to improve the measuring accuracy, the reference voltage is currently measured using an external test system. The voltage can be varied in a specific range using software registers. The suitable values in the registers are determined from the measured value in the test system to arrive at the correct internal voltage, and the suitable values can be burnt into the chip permanently by laser fuses.
Such a method contributes considerably to the test costs: during the measurement of the internal reference voltage of SDRAM modules, sixty-four (64) modules, for example, are measured in parallel per wafer. Thus, it is necessary to determine sixty-four (64) analogous voltages with a high degree of accuracy by the test system. In the case of embedded DRAMs, there are a plurality of reference voltages on one module, for example, eight (8) reference voltages. Experience has shown that considerable fluctuations in reference voltages also occur within the module. In such a case, eight (8) analogous reference voltages must be measured per module.
With the concept proposed in German Patent DE 199 60 244.1 specified above, it is possible to standardize an internal voltage by making an internal digital/analog converter run through various values of a correction voltage.
In addition, it is possible to measure an internal voltage by searching for an external voltage that corresponds to the internal reference voltage. For such a method, just one binary output has to be led out from the chip. To compare the external voltage supplied from the outside with the internal reference voltage, an operational amplifier serving as a comparator must have a very high degree of accuracy because the offset voltage is completely absorbed in the set value for the reference voltage.
However, in customary operational amplifiers (in particular, CMOS operational amplifiers), it is possible, without a large degree of expenditure on circuitry, for considerable offset voltages to occur that are known to be the consequence of parameter variation in the transistors of the amplifier. If it is desired to minimize such parameter variations, the operational amplifier becomes very complex and costly.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method and device for offset-voltage-free voltage measurement and adjustment of a reference voltage source of an integrated semiconductor circuit that overcomes the hereinafore-mentioned disadvantages of the heretofore-known methods and devices of this general type and that avoids the described problem of the offset voltage of the detecting operational amplifier so that a cost-effective operational amplifier can be used.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a method for measuring and setting of a voltage of an adjustable internal reference voltage source of an integrated semiconductor circuit including the steps of comparing a reference voltage to an external comparison voltage with a comparator having two inputs, forming a measured value for the reference voltage that is to be set in accordance with a result of the comparison, switching a commutator by one of a clock-control and a software-control to alternatively apply the reference voltage and the external comparison voltage to the two inputs of the comparator at the same time, varying one of the reference voltage and the external comparison voltage in a direction of a setpoint voltage value until the comparator output changes its logic value at each switched stage of the commutator, buffering the voltage values present for each switched state of the commutator when the logic value of the comparator output changes and respectively varied in the preceding step, forming an average value for the reference voltage from the stored voltage values, and setting the reference voltage as a function of the average value formed in the preceding step. Preferably, the integrated semiconductor circuit is a dynamic semiconductor memory.
By the method according to the invention it is possible for the voltage value to be measured independently of the offset voltage of the operational amplifier serving as the comparator, by virtue of the fact that a change-over switch or commutator is provided upstream of the operational amplifier that functions as a comparator and the commutator alternately applies the reference voltage to be measured and the comparison voltage supplied from the outside to the comparator inputs. The measured value determined for the respective switched position of the commutator is stored in a piece of software that runs in a control unit forming, for example, part of a test equipment unit, and an average value is formed from the measured value. Thus, by software, the problem of the offset voltage of the comparator is avoided.
The method according to the invention proposes that the offset problems be avoided by a software solution. As such, the offset voltage is carried out by an offset elimination effectuated by software.
In accordance with another mode of the invention, it is also possible and, in view of the unavoidable RC characteristics of an external comparison voltage, possibly advantageous to vary the external comparison voltage incrementally and to place the commutator or change-over switch upstream of the comparator in both settings for each value of the comparison voltage.
In accordance with a further mode of the invention, it is also possible to fix the external comparison voltage at a setpoint value for the internal voltage, and to vary the internal reference voltage.
In accordance with an added mode of the invention, the varying step is carried out by maintaining the internal reference voltage constant while varying the external comparison voltage.
In accordance with an additional mode of the invention, the switching and varying steps are performed by, in a first switched state of the commutator, firstly varying the external comparison voltage in a voltage range around the setpoint voltage value with the reference voltage kept constant, and performing the buffering step by buffering that voltage value of the external comparison voltage at which the comparator output changes its logic state, and, in the second switched state of the commutator in which the reference voltage and the external comparison voltage are interchanged between the two comparator inputs in comparison with the first switched state of the commutator, varying the external comparison voltage in a voltage range around the setpoint voltage value with the reference voltage kept constant, and performing the buffering step by storing that voltage value of the external comparison voltage at which the comparator output changes its logic state.
In accordance with yet another mode of the invention, the external comparison voltage is incrementally varied.
In accordance with yet a further mode of the inventi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for offset-voltage free voltage... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for offset-voltage free voltage..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for offset-voltage free voltage... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.