Method for testing the functioning of a radio apparatus, and...

Telecommunications – Transmitter and receiver at separate stations – Having measuring – testing – or monitoring of system or part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S067110, C455S067130, C455S067160, C455S067700, C455S423000, C455S424000, C455S425000

Reexamination Certificate

active

06697604

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to testing, and in particular to testing the function of a mobile station.
2. Brief Description of Related Developments
Up to the digital, cellular systems of the second generation, radio apparatuses, such as mobile stations, have been primarily phones, wherein the information to be transmitted has been primarily digitized speech. For speech transmission in communication between a mobile station and a base transceiver station, a so-called traffic channel has been defined, whose properties are optimized according to features characteristic to speech communication. However, the use of mobile stations is becoming more versatile with expansions in the systems of the second generation and particularly with the introduction of digital cellular radio systems of the third generation. Good examples of expansions of the second generation designed for the GSM system (Global System for Mobile Telecommunications) are HSCSD (High Speed Circuit Switched Data), in which one connection between a terminal device and a base station is allocated several time slots of the TDMA frame; the GPRS (General Packet Radio System) which is based on packet-switched connections between the base station and the terminal device instead of previous circuit-switched connections; as well as the EDGE (Enhanced Data rates for GSM Evolution), in which modulation methods and channel coding are changed to achieve a considerably higher momentary data transmission rate between the base station and the terminal device than in devices of prior art. The GSM system refers generally to its different versions at operational frequencies of 900 Mhz, 1800 Mhz and 1900 Mhz, although the latter ones have also been called DCS1800 and DCS1900 (Digital Communications System at 1800/1900 Mhz).
In more versatile mobile communication, the transmission of data other than digitized speech will be of increasing importance. Data transmission is thus characterized by the non-real-time quality in general, as well as by entirely different demands on error correction and variations in the data transmission rate than in digitized speech. Data transmission comes into question particularly when the terminal device in the cellular radio system is a mobile phone which is connected to a separate data processing auxiliary device, such as a computer. For data transmission, mobile communication systems are provided with specified traffic channels whose properties can be optimized for data transmission.
Testing of terminal devices for the functions involved in e.g. the use of traffic channels has proved problematic. The use of traffic channels is conventionally involved in a situation shown in
FIG. 1
, in which a mobile phone MS (mobile station) used as the terminal device is locally connected with DTE (data terminal equipment) of a terminal adapter TA. The cellular radio system is simulated during the test by a system called SS (simulation system). The testing of traffic channels has required that a functioning data transmission connection is set up between the SS and the DTE via the MS, to serve a simultaneously functioning application requiring data transmission. The application in question must be active in the DTE and it must be simulated in the SS, which causes extra complication in the test. This may also extend the time duration of the test.
The need of a separate data terminal and the application to be run therein, as well as the very long extended testing time have easily the result that the data terminal interrupts the data transmission connection set up for the test, because one of the time limits specific for the application in question expires or the number of errors detected in the data transmission channel exceeds a limit value specific for the application in question. This causes uncertainty and a need to test the status of the device, particularly the data transmission protocol, during the test. Furthermore, known tests usually apply the procedure that a frame received by the data terminal from the SS (downlink, i.e. data transmission from the base station to the mobile station), is circulated bit by bit as such uplink (i.e. data transmission from the mobile station to the base station), and downlink data transmission is circulated back to the SS, which usually confuses the numbering of uplink frames specific for traffic channels, and also causes the data terminal to interupt the data transmission connection. Moreover, problems are caused by the fact that data transmitted on traffic channels may consist of such upper level units which in the radio connection between the base station and the mobile phone must be divided into several bursts in succession or close to each other. Information is transmitted in the channel in radio frequency bursts with limited duration, consisting of a sequence of modulated bits. So that the data terminal could be confirmed of the error-free reception of the information thus transmitted, it must decode a large number of frames and recombine the information contained therein. As a result of all this, testing of the functioning of a traffic channel by a conventional method involves largely the testing of the functioning of the terminal adapter and data terminal connected with the mobile phone and not the functioning of the mobile phone itself. This is inappropriate particularly for tests related to the type approval (TA) of mobile phones.
Attempts have been made to approach the problem related to cutting off of a connection from the point of view of the functioning of the data terminal, i.e. it has been allocated a testing mode, in which normal reactions to the long connection time and the confusion of numbering of the frames are eliminated. However, this does not eliminate the problem that the final result of the test intended for testing the mobile phone depends largely on whether the data terminal and the software controlling its operation function correctly, or partly on whether the upper levels of the data transfer protocol or external connections (e.g. external data interface) of the mobile phone function correctly.
There are known methods in which the necessary functions are defined, whereby downlink data related to the traffic channels to be tested is circulated back uplink in the mobile station so that it is not passed via the external terminal device. It is characteristic for the test loops of the methods that the response generated in the mobile station to a command of a determined protocol level received from the testing apparatus is to generate a traffic channel test loop to circulate downlink data received from the testing apparatus back uplink to the testing apparatus, and the reception of downlink data and the transmission of uplink data is controlled by said protocol level during the testing.
In the methods, the communication protocol controlling the test situation has been modified in a way that for the test mode, only a required connection of a lower protocol level is opened between the mobile station to be tested and the testing apparatus simulating the cellular radio system. The mobile station does not need to be connected with any external data terminal device at all, nor does an actual data call need to be set up in view of the upper protocol layers being aware of the connection set up. The fact that the upper protocol layers are unaware prevents an untimely termination of the connection by a function involved with them. The test data is conveyed downlink from the testing apparatus to the mobile station which circulates applicable parts of the test data back downlink. The test loop is a logical connection to a certain point in a chain of components and functions intended for downlink data processing.
For testing different functions of a mobile station, the method is modified in several embodiments which differ from each other in the “depth” in which the circulation of the test data of the mobile station takes place uplink. The depth refers to the number of components and/or functions through which t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for testing the functioning of a radio apparatus, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for testing the functioning of a radio apparatus, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for testing the functioning of a radio apparatus, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.