Computer graphics processing and selective visual display system – Display peripheral interface input device
Reexamination Certificate
1999-09-22
2004-08-10
Liang, Regina (Department: 2674)
Computer graphics processing and selective visual display system
Display peripheral interface input device
C345S008000, C482S051000, C382S155000, C434S247000
Reexamination Certificate
active
06774885
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
This invention most generally relates to a system that combines motion capture, motion platform and simulation technology to create a fully reactive virtual and physical environment. More specifically, the present invention creates a simulated environment with real-time feedback for controlling the environment of the user. Even more specifically, the present invention incorporates operator and user runtime control with a real-time feedback loop to process data from optical and/or magnetic sensors and from a motion platform, and to generate new data sets that are introduced into the dynamic system.
2. Background of the Invention
Various studies of human motion and motor skills have contributed to methods and systems of improving motion skills and increasing the efficiency of learning motor skills. There are many applications where the increased learning curve for motion skills would be of great benefit, especially for rehabilitation purposes.
The manner in which human motion skills are learned is a complex process with continual biofeedback that begins at birth. A baby learns the physical limitations and boundaries appropriate for its size and strength, and develops the control required for manual tasks. By a constant trial and error process, a baby learns one skill set after another, in accordance with the additional size and strength development, as well as the developing mental abilities and biofeedback control. The motion skills become implanted as recognition patterns, and are recalled when that desired motion is required. The simple act of walking is actually a complex array of motions combined with biofeedback mechanisms.
The rate of learning by a baby is extremely rapid as compared to an adult adapting to new skill sets or re-learning skill sets that were lost because of an accident or medical condition. For example, a person in an accident that is outfitted with a prosthetic leg will have to re-learn the motor skills associated with walking. Balance, coordination, and the feedback control loop are altered to adapt to the prosthetic device, and it is only through a long and arduous learning process that the person will regain the ability to walk. And, the gait may or may not be natural in appearance.
There have been various attempts to utilize emerging technologies to assist in the rehabilitation process, including motion capture. Motion Capture is a term for a variety of techniques, and the technology has existed for many years in a variety of applications. The aim of motion capture is to create three-dimensional (3D) animation and natural simulations in a performance oriented manner.
In the entertainment industry, motion capture allows an operator to use computer-generated characters. The characters are used in scenes that are impractical or dangerous. Motion capture is used to create complex natural motion, using the full range of human movements and allow inanimate objects to move realistically.
Some motion capture systems provide real-time feedback of the created works and allows the operator to immediately determine whether the motion works sufficiently. Motion capture can be applied to full body motion as well as to hand animation, facial animation and real time lip sync. Motion capture is also used in medical, simulation, engineering and ergonomic applications, and in feature films, advertising, TV and 3D computer games.
Motion platforms have also been used for a variety of applications. A motion platform is a surface area that is controlled by servos, gyros, and/or actuators that manipulate the platform according to a controller. Most motion platform applications, both commercial and military, are used in simulations. The entertainment industry incorporates motion platforms in simulated rides, where a platform is manipulated to present an experience to the rider such as riding a train. Other commercial applications include flight simulations to train and test pilots with less expense and lower risk to equipment and personnel. Computer generated scenes of sequences have been used in conjunction with the platform to enhance the experience.
Virtual Environment (VE) technology primarily allows a patient to commit to a learning task. Early developments of surgical simulators have demonstrated the great potential of VE technology for training purposes. Theoretically, using VE one can record motor responses and use them to interact with and manipulate the same environment, providing an ideal tool as an approach to determine the variables involved in the execution of a motor task. VE can be used to simultaneously test, analyze, retest and train sensory and motor responsiveness.
There are many potentials and some limitations of VE computer technology to the field of clinical rehabilitation. At present there are very few documented articles on the benefits of virtual reality systems embedded into a perceptual or motor retraining program. However, it is suggested that with proper computer techniques, retraining could provide accurate measures of treatment modalities, according to the patients' progress in the rehabilitation program. The ability to produce unexpected changing goals and external forces would be of use in the field of motor rehabilitation, where virtual reality techniques can give supplemental support to the existing diagnostic loop, which requires monitoring and adjustment at all stages of therapy and recovery.
One of the major goals in the rehabilitation process constitutes of the quantitative and qualitative improvements of daily activities of a disabled person to make independent living possible. Before making up an adequate training program thorough analysis of the movement patterns is necessary. It has been proven that the best training is the so-called functional training: in order to improve a function one should train specifically this function in the way the disabled person uses it in daily living. Basic abilities, like standing and walking are already complex movements to analyze, but normal activities of daily life (ADL), like dressing, cooking or household activities, are even more complex. Still these are the goals of rehabilitation programs.
Analysis and training feedback until now are only possible for components of these activities, such as EMG feedback or balance ground floor reactions. These feedback centers are usually in a laboratory, an artificial environment that does not resemble the normal surroundings of a disabled person. There is currently no relevant artificial environment for that would simulate the actual environment of a disabled person in order to provide a more accurate and realistic training system.
Various attempts have been made to address the aforementioned problems. Prior art systems teach adaptive and motion control, which allows a user to acquire or improve motor skills by viewing and imitating recorded motions. The motion capture is typically recorded by video cameras and stored on video tape while other systems digitize the video image and the motion sequence. The user compares his motion to the recorded motion and tries to adopt the recorded motion. In these prior art applications, the user tries to emulate the recorded or reference data set. And, the prior systems do not make the user actually perform the desired motion sequence.
In U.S. Pat. No. 4,337,049, a system is disclosed wherein motion data from cameras is compared to a reference data set. An error compensation formula is used to signal the user when a threshold level is exceeded, as the user tries to emulate the visual reference.
One application described in U.S. Pat. No. 5,822,813 ('813) incorporates a motion compensated device into a bedding apparatus for a ship. The '813 invention uses a sensing means to detect the instantaneous position of the deck with respect to a reference plane. A control system commands a set of servos to keep the bed platform stable despite the pitching and rolling of a vessel.
The invention of U.S. Pat. No. 5,768,122 describes a motion platform that
Dinh Duc Q.
Liang Regina
Maine & Asmus
Motek B.V.
LandOfFree
System for dynamic registration, evaluation, and correction... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System for dynamic registration, evaluation, and correction..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for dynamic registration, evaluation, and correction... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289644