System and method for processing weather information

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S170160

Reexamination Certificate

active

06829536

ABSTRACT:

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
FIELD OF THE INVENTION
The present invention pertains generally systems and methods for displaying representations of weather phenomenon over maps of geographic locations for televised weather presentations, and the like, and computer based systems and methods for preparing and manipulating such displays including systems and methods for tracking and displaying the expected future path of such weather phenomena.
BACKGROUND OF THE INVENTION
Various systems and methods are used for providing viewers of broadcast and cable television weather presentations with informative and accurate weather information. Typically, such systems provide a display of weather phenomena, e.g. clouds, rain, storms, etc., overlaid on a map of a geographical area of interest. Such displays were originally created by drawing representations of weather phenomena, or placing pre-made weather symbols, on a physical map of an area of interest. The image of the map was then broadcast to viewers, usually with a weather presenter positioned in front of the map to provide an explanation of the map display. Computer systems are now employed to facilitate the generation of weather displays, using computer generated graphics with animation.
A typical computer-implemented system for preparing a weather presentation will include detailed digital maps of geographic areas of interest stored for access by the computer. Weather information, such as satellite imagery and/or weather radar information, such as NEXRAD weather radar information provided by the government and live local weather radar data, is provided to the system. The system processes the weather information to generate a display, e.g., of the current position of weather phenomena, such as a storm cell, and, e.g., of the projected path of the weather phenomena over a future period of time. A graphical display and/or representation of the current position, and projected future path, of the weather phenomena is then overlaid on the digital maps to create a digital display of current and predicted weather for a particular area of interest. Other information provided on the weather display may include a display of the characteristics of the weather phenomena displayed, e.g., whether a storm cell contains elements of hail or tornadoes, as well as a graphical and/or textual display of when a particular weather condition is expected to reach a particular location.
The ability to combine weather information from various weather information sources with geographical data to determine, e.g., the current position of weather phenomena and predicted path of such phenomena with respect to geographic locations of interest, and then to generate a combined weather/geographical display in an accurate and informative manner, can provide a challenge in that weather information sources, geographical databases, and screen displays employ various different coordinate systems to identify the positions of weather phenomena, geographical locations, and display positions within their respective areas. For example, weather radar systems may provide information on the current position of weather phenomena, e.g., a storm being tracked by the weather radar, as an angular direction of the storm from the radar source (azimuth) and distance of the storm from the radar source (range). An example of such a weather radar system is the NEXRAD radar service, which provides such storm attribute position information in degrees and nautical miles, along with detailed information on the contents of the storm, as well as a forecast movement angle (storm path) in degrees and forecast movement speed in nautical miles per hour. Conventional commercially available geographic databases typically provide location information for places included in the database in conventional latitude/longitude (lat/lon) coordinates. In order to combine the NEXRAD weather radar information with the geographical database information, e.g., to determine which places identified in the geographical database are currently affected by, or are in the predicted path of, a storm identified in the NEXRAD information, the storm location information provided by NEXRAD in range and azimuth and the geographical information provided in the geographical database in lat/lon must be converted to a common coordinate system. In conventional computer-implemented systems for preparing weather presentations, this is achieved by converting the location of a storm or other weather phenomena identified by range and azimuth in the NEXRAD, or other radar, data to lat/lon coordinates, in a conventional manner, such that the position of the storm or other weather phenomena, and predicted path of movement thereof, may be compared easily to places identified by lat/lon coordinates in the geographical database, to determine which places are currently, or in the future are likely to be, affected by the storm or other weather phenomena. The storm location/predicted path of movement in lat/lon may then be combined with the geographical/map database in lat/lon coordinates to generate a graphical display of the weather phenomena overlaid on a graphical map display by converting the lat/lon coordinates of the weather phenomena and geographic data into two-dimensional screen coordinates in a conventional manner.
Although conceptually straightforward, the conventional method of converting weather radar information provided in azimuth and range from a known radar site location to lat/lon coordinates is considerably limited and inflexible. The conversion to two-dimensional lat/lon coordinates does not take into account any altitude information, i.e., neither altitude above/below sea level nor altitude above the Earth's surface, of weather phenomena information which may be provided by or extracted from a weather radar or other weather information source. Thus, valuable information may be lost in the conversion of weather information to lat/lon coordinates which do not take into account weather phenomena altitude or variations in altitude of the Earth's topology. Furthermore, although it may be convenient to convert the range and azimuth of a storm location from a given fixed NEXRAD or other radar location, for which the lat/lon coordinates are known, to lat/lon coordinates, such a conversion may not be as convenient for weather phenomena information provided from current or future weather information sources which do not provide weather information in such a manner, e.g., satellite based weather observation systems. Thus, such a conversion to lat/lon coordinates may not be effective or useful when it is desired to combine weather information from a variety of different weather information sources to generate a weather presentation and display.
What is desired, therefore, is a system and method for processing weather information in which weather information from one or more weather information sources is converted into a universal three-dimensional coordinate system. Preferably, the current location of weather phenomena may be converted into the universal three-dimensional coordinate system from weather information provided by one or more weather information sources, and a predicted path of movement of such weather phenomena may be generated in the three-dimensional coordinate system. Preferably, locations of selected places of interest may be provided in, or converted to, the three-dimensional coordinate system for comparison with the weather phenomena position and predicted path of movement information in the three-dimensional coordinate system, to determine if the selected places of interest are currently affected by, or are in the predicted path of, the weather phenomena. The position of wea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for processing weather information does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for processing weather information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for processing weather information will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.