Skin-mounted electrodes with nano spikes

Surgery – Diagnostic testing – Structure of body-contacting electrode or electrode inserted...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S386000, C600S393000

Reexamination Certificate

active

06690959

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to medical devices. Specifically the invention relates to skin mounted electrodes with substantially short nano spikes that are easily attachable to human skin. More specifically, the invention relates to electrodes that provide substantially positive and reliable contact without the need for using gels, shaving and/or sanding of the skin surface to enable positive electrical electrode attachment.
BACKGROUND OF THE INVENTION
Epidermal attachments for physiological data collection such as ECG and EEG sensing and transdermal delivery of peptides, proteins, various agents and drugs to the human body are some of the medically useful applications for skin mounted medical devices. Some of these devices require mechanical disruption of the skin in order to enhance transdermal flux such as disclosed in U.S. Pat. No. 3,814,097 issued to Ganderton et al, U.S. Pat. No. 5,279,544 issued to Gross et al, U.S. Pat. No. 5,250,023 issued to Lee et al., and U.S. Pat. No. 3,964,482 issued to Gerstell et al. These devices typically utilize tubular or cylindrical structures generally, although the Gerstell invention uses an array of solid or hollow microneedles to penetrate through the stratum corneum into the epidermal layer, but not to the dermal layer. PCT applications WO 97/48440, WO 97/48441, and WO 97/48442 by Cormier et al employ a plurality of solid metallic microblades and anchor elements, etched from a metal sheet, with a length of 25-400 mm. PCT application WO 96/37256, by Godshall discloses another microblade structure with blade lengths of 10-20 mm for enhancing transdermal delivery.
Another example of a needle that penetrates into the dermis is provided in U.S. Pat. No. 5,591,139, WO 99/00155, and U.S. Pat. No. 5,855,801 all issued to Lin. These patents and publications disclose how the needles are processed using integrated circuit fabrication techniques. The needles used have a length in the range of 1,000 to 6,000 microns.
U.S. Pat. No. 5,309,909 issued to Gadsby et al., discloses a combined skin preparation and monitoring electrode. The electrode is designed to reduce motion artifacts in recording biopotentials by penetrating a patient's skin prior to acquiring biopotentials. Penetration of the skin reduces the skin impedance and the skin's propensity to generate motion artifacts. The electrode includes a resilient dome with penetration tines extending from the concave inner surface of the dome. Upon application of a force, the dome moves from a first position to second position forcing the penetration tines into a patient's skin. Upon removal of the force, the dome moves back to its original configuration withdrawing the penetration tines from the patient's skin.
U.S. Pat. No. 5,197,471 issued to Otero, discloses a dry electrode for medical use to record existent biopotentials on the skin surface and for electrical stimulation of different zones of the human body. The dry electrode comprises a flexible electro-conductive plate provided on its bottom side with a plurality of sharp bosses for partial skin penetration. The plate includes a corrugated radial extension tongue and two orifices, the first orifice in the center of the plate and a second orifice in the tongue portion. The orifices in the tongue portion allow for different connectors to be utilized, such as a stem with a circular base, a Stillson wrench or a hook type connection. The electrode makes contact on its bottom face with a needle that penetrates and stays anchored within the skin.
U.S. Pat. No. 4,311,152, issued to Modes et al., discloses a medical electrode and skin preparation device adapted to be secured to the skin and designed to prepare the skin by penetration of the epidermal layer of the skin in contact with the electrical conductor of the electrode after the electrode is secured in place on the skin. The electrode includes an abrading member associated with an electrical conductor capable of transmitting biopotential events for recording, with the electrical conductor retained by a collar and an adhesive-coated pad securing the electrode to the skin of the patient. The abrading member in contact with the skin is movable relative to the skin of the patient and collar by an applicator gun so as to allow penetration of the epidermal layer of the skin after the electrode is placed on the skin. Uniform skin preparation achieved by the electrode and applicator gun minimizes motion artifacts arising from skin potential variations.
U.S. Pat. No. 5,701,895, issued to Prutchi et al, discloses an implantable subcutaneous data port for transferring data received from a sensor implanted within a subject. The data port electrically connects to the sensor and includes a control circuit electrically connected to an access port. The control circuit includes a current loop transmitter that modulates a current loop signal with voltage outputs from the sensor. Needle electrodes (large minimum diameter) are insertable through the skin of the subject to the access port and provide an electrical interface between the control circuit and current loop receiver.
U.S. Pat. No. 6,050,988, issued to Zuck, discloses a device including a sheet member having a plurality of microprotrusions extending from a bottom edge for penetrating the skin of a patient. The sheet member, when in use, is oriented in an approximately perpendicular relation to the patient's skin. The microprotrusions penetrate the body surface to create good agent conduction from the system into the body or vice versa. Also, the microprotrusions or microblades are generally formed from a single piece of material and are sufficiently sharp and long for penetrating at least the stratum corneum of the skin.
U.S. Pat. No. 5,458,141, issued to Neil, discloses a medical electrode and a skin preparation device adapted to be secured to the skin of a patient and designed to prepare the skin by abrasion or penetration of the epidermal layer of the skin in contact with the conductive means of the electrode after the electrode is secured in place on the skin. The electrode includes a penetrating device associated with a conductor capable of transmitting biopotential events for recording, with the conductor being retained by an adhesive member that secures the electrode to the skin of the patient. The penetration device in contact with the skin is movable relative to the skin of the patient and a holder by an applicator gun to abrade or penetrate the epidermal layer of skin after the electrode is placed on the skin. Uniform skin preparation is achieved by a flexible screen member and electrolyte gel reservoir on the electrode and an applicator gun that minimizes motion artifacts arising from skin potential variations.
PCT publication WO 98/25517, by Svedman, discloses a device for sensing bioelectrical signals. Specifically, the invention relates to an electrode device that utilizes negative pressure and preferably heat to a portion of the epidermis causing interstitial fluid and/or the epidermal basement membrane to contact an electrode for a measuring operation.
Attachment devices exist for fixing EEG electrodes to a patient's scalp. These devices may use colloidal glue, adhesive tape or bandages. EEG electrodes may also be attached by incorporating them into web matrix helmets. Placing and removing these EEG electrodes from a patient's scalp is time consuming. The EEG electrodes are uncomfortable to wear and may lose signal contact during extended ambulatory monitoring. A quick-placement EEG electrode is described in U.S. Pat. No. 6,201,982 issued to Menkes and referenced herein in its totality. This patent proposes the continued use of gel as well as several connecting devices to replace current electrodes to ensure positive electrode contact.
Further, there is a need for a smart patch as described in U.S. Pat. No. 6,200,265 issued to Walsh and Thompson, which is incorporated herein by reference in its entirety. The patch electrode in the '265 patent describes the reception

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Skin-mounted electrodes with nano spikes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Skin-mounted electrodes with nano spikes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Skin-mounted electrodes with nano spikes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.