Drivetrain for a motor vehicle

Motor vehicles – Power – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S054100, C180S065310

Reexamination Certificate

active

06830118

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a drive train for motor vehicles.
In order to realize the starting operation of an internal combustion engine, electric machines are predominantly used; in the normal case, to start the engine a starter pinion is made to engage the flywheel teeth. The electric machines used to start internal combustion engines are as a rule direct-current, alternating-current or rotary-current motors. However, electric machines in the form of starter-generators are gaining increasing importance; for starting the engine, they are operated as an electric motor, while during operation of the engine, they are operated as a generator.
The electric direct-current series motor is especially suitable as a starter motor, because it develops the requisite high initial torque to overcome the resistances to turning over and to accelerate the engine masses. This is necessary because each time an engine is started, considerable resistances are presented by the engine sealing, piston friction, and bearing friction. In addition, both the model type and the number of cylinders of the engine, the lubricant used, and the current engine temperature all play an essential role in the operation of starting the engine.
The torque of the starter is predominantly transmitted to the flywheel on the engine crankshaft via a pinion and a ring gear. In isolated cases, however, belts, V-belts, toothed belts, chains, or direct transmission to the crankshaft is selected. The pinion starter, however, because of the high ratio between the starter pinion and ring gear of the engine flywheel is best suited for a starting operation, because it can be designed for a low torque at high rpm. This design makes it possible to keep the dimensions of the starter small and its weight low.
The starter must crank the combustion event with a minimum rpm, called a starting rpm, so that even under unfavorable operating conditions, the requisite air-fuel mixture for sustained operation in the Otto engine can be formed, or in the case of the diesel engine, the self-ignition temperature can be attained. In addition, the starter must support the engine after the first ignitions as it runs up to its minimum sustained rpm.
Especially when a vehicle with automatic start-stop control is involved, the engine has to be started frequently.
Not until the engine has accelerated to an rpm sufficient for outputting power can the clutch be closed, and the vehicle starts to move.
When the engine has been turned off at a traffic light, re-starting the engine is especially problematic, because the starting of the engine creates an idle time until the vehicle begins to move.
Another problem can occur for instance because the starting process in start-stop systems is initiated by the actuation of the accelerator pedal; that is, to actuate the accelerator pedal, the driver must take his foot off the brake to start the vehicle. As a result, if the vehicle is stopped on a slope, the vehicle can roll backward during the idle time, unless the driver has taken the precaution of actuating the emergency brake. On starting up, the driver must then release the emergency brake at the right instant, so that the engine will not work against the brake.
To solve this problem, a mechanical device disposed inside the gear train has already been proposed; it prevents the vehicle from rolling counter to the desired travel direction, which is detected from the gear that has been selected.
SUMMARY OF THE INVENTION
Because, in the drive train according to the invention for a motor vehicle, means are provided, which upon starting of the engine can actuate the clutch in such a way that a first part of the torque generated upon starting of the engine by the electric machine is transmitted to the at least one vehicle drive wheel, and a second part of the torque generated by the electric machine and sufficient for starting the engine is transmitted to the engine, the aforementioned problems can be overcome without requiring a mechanical device disposed inside the gear train.
The means can include a control device, for which preferably temperature- and/or rpm-dependent performance graphs for the drive torque of the engine and/or for the starting torque and/or for the clutch engagement moment, which is predominantly dependent on the clutch engagement travel, are used. It is also conceivable that these performance graphs are varied adaptively.
The means can include a regulating device. The controlled variable of the regulating circuit can be formed for instance by the crankshaft rpm. The guide variable, that is, the variable whose value the task variable is supposed to assume under defined conditions, can in this case be the crankshaft rpm, for instance, beyond which the engine is capable of outputting power. The final control element can be formed for instance by an automatic clutch.
The regulating device can regulate the torque, transmitted upon starting of the engine by the electric machine to the at least one vehicle drive wheel, in such a way that rotational irregularities of the engine upon starting of the engine are decoupled from the at least one vehicle drive wheel.
This decoupling of the rotational irregularities can be effected at least until such time as the engine has reached an rpm at which it is capable of outputting power. It is also conceivable that the regulating device regulates the torque, transmitted upon starting of the engine by the electric machine to the at least one vehicle drive wheel, in such a way that the vehicle is kept at a stop until the engine has reached an rpm at which it can output power.
Although such regulation would prevent the vehicle from rolling backward on a slope, still it would not eliminate the idle time mentioned above.
Regardless of the especially selected regulation, the sensors can be provided, which detect an exceptional state in which the vehicle, because of external forces, would undesirably put itself into motion, because the torque transmitted upon starting of the electric machine to the at least one vehicle drive wheel is too low to prevent the unwanted motion of the motor vehicle.
These external forces include for instance gravity, which when a vehicle on a slope begins to move can lead to an unwanted motion of the motor vehicle
It is conceivable that the exceptional state detected by the sensors is indicated to the driver in some suitable way, for instance visually and/or acoustically and/or by feel.
It is also conceivable that a vehicle brake is provided, which is actuated automatically upon the occurrence of the exceptional state, in order to prevent the unwanted motion of the motor vehicle.
This vehicle brake is preferably the service brake that is present anyway, or the brake connected to the usual brake system.
In that case, it is advantageous if the vehicle brake is automatically released when the engine has reached an rpm at which it can output power, that is, in a state in which the vehicle can put itself into motion in the desired direction.
It is also conceivable that the regulating device regulates the torque, transmitted upon starting of the engine by the electric machine to the at least one vehicle drive wheel, in such a way that the motor vehicle puts itself in motion, before the engine has reached an rpm at which it can output power.
In this variant regulation, both unwanted rolling backward and the idle time mentioned above can be avoided, since the motor vehicle can already put itself into motion as a result of the torque generated by the electric machine.
The means provided in accordance with the invention preferably include an automatic clutch, which actuates the clutch.
In this case, the regulating device can trigger the automatic clutch.
The advantages attained by the present invention are particularly effective if a motor vehicle is involved in which an automatic start-stop control is provided, which can stop the engine when the vehicle is stopped, for instance at a red light, and re-start it for driving on again.
It can be advantageous that only in stop and go

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Drivetrain for a motor vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Drivetrain for a motor vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Drivetrain for a motor vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3283767

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.