MN gene and protein

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300

Reexamination Certificate

active

06770438

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the general area of medical genetics and in the fields of biochemical engineering and immunochemistry. More specifically, it relates to the identification of a new gene—the MN gene—a cellular gene coding for the MN protein. The inventors hereof found MN proteins to be associated with tumorigenicity. Evidence indicates that the MN protein appears to represent a potentially novel type of oncoprotein. Identification of MN antigen as well as antibodies specific therefor in patient samples provides the basis for diagnostic/prognostic assays for cancer.
BACKGROUND OF THE INVENTION
A novel quasi-viral agent having rather unusual properties was detected by its capacity to complement mutants of vesicular stomatitis virus (VSV) with heat-labile surface G protein in HeLa cells (cell line derived from human cervical adenocarcinoma), which had been cocultivated with human breast carcinoma cells. [Zavada et al.,
Nature New Biol.,
240: 124 (1972); Zavada et al.,
J. Gen. Virol.,
24: 327 (1974); Zavada, J.,
Arch. Virol.,
50: 1 (1976); Zavada, J.,
J. Gen. Virol.,
63: 15-24 (1982); Zavada and Zavadova,
Arch, Virol.,
118: 189 (1991).] The quasi viral agent was called MaTu as it was presumably derived from a human
ma
mmary
tu
mor.
There was significant medical interest in studying and characterizing MaTu as it appeared to be an entirely new type of molecular parasite of living cells, and possibly originated from a human tumor. Described herein is the elucidation of the biological and molecular nature of MaTu which resulted in the discovery of the MN gene and protein. MaTu was found by the inventors to be a two-component system, having an exogenous transmissible component, MX, and an endogenous cellular component, MN. As described herein, the MN component was found to be a cellular gene, showing only very little homology with known DNA sequences. The MN gene was found to be present in the chromosomal DNA of all vertebrates tested, and its expression was found to be strongly correlated with tumorigenicity.
The exogenous MaTu-MX transmissible agent was identified as lymphocytic choriomeningitis virus (LCMV) which persistently infects HeLa cells. The inventors discovered that the MN expression in HeLa cells is positively regulated by cell density, and also its expression level is increased by persistent infection with LCMV.
Research results provided herein show that cells transfected with MN cDNA undergo changes indicative of malignant transformation.
Further research findings described herein indicate that the disruption of cell cycle control is one of the mechanisms by which MN may contribute to the complex process of tumor development.
Described herein is the cloning and sequencing of the MN gene and the recombinant production of MN proteins. Also described are antibodies prepared against MN proteins/polypeptides. MN proteins/polypeptides can be used in serological assays according to this invention to detect MN-specific antibodies. Further, MN proteins/polypeptides and/or antibodies reactive with MN antigen can be used in immunoassays according to this invention to detect and/or quantitate MN antigen. Such assays may be diagnostic and/or prognostic for neoplastic/pre-neoplastic disease.
SUMMARY OF THE INVENTION
Herein disclosed is the MN gene, a cellular gene which is the endogenous component of the MaTu agent. A full-length cDNA sequence for the MN gene is shown in
FIGS. 1A-1C
[SEQ. ID. NO.: 1].
FIGS. 15A-15F
provide a complete genomic sequence for MN [SEQ. ID. NO.: 5].
FIG. 25
provides the sequence for a proposed MN promoter region [SEQ. ID. NO.: 27].
This invention is directed to the MN gene, fragments thereof and the related cDNA which are useful, for example, as follows: 1) to produce MN proteins/polypeptides by biochemical engineering; 2) to prepare nucleic acid probes to test for the presence of the MN gene in cells of a subject; 3) to prepare appropriate polymerase chain reaction (PCR) primers for use, for example, in PCR-based assays or to produce nucleic acid probes, 4) to identify MN proteins and polypeptides as well as homologs or near homologs thereto; 5) to identify various mRNAs transcribed from MN genes in various tissues and cell lines, preferably human; and 6) to identify mutations in MN genes. The invention further concerns purified and isolated DNA molecules comprising the MN gene or fragments thereof, or the related cDNA or fragments thereof.
Thus, this invention in one aspect concerns isolated nucleic acid sequences that encode MN proteins or polypeptides wherein the nucleotide sequences for said nucleic acids are selected from the group consisting of:
(a) SEQ. ID. NO.: 1;
(b) nucleotide sequences that hybridize under stringent conditions to SEQ. ID. NO.: 1 or to its complement;
(c) nucleotide sequences that differ from SEQ. ID. NO.: 1 or from the nucleotide sequences of (b) in codon sequence because of the degeneracy of the genetic code. Further, such nucleic acid sequences are selected from nucleotide sequences that but for the degeneracy of the genetic code would hybridize to SEQ. ID. NO.: 1 or to its complement under stringent hybridization conditions.
Further, such isolated nucleic acids that encode MN proteins or polypeptides can also include the MN nucleic acids of the genomic clone shown in
FIGS. 15A-15F
, that is, SEQ. ID. NO.: 5, as well as sequences that hybridize to it or its complement under stringent conditions, or would hybridize to SEQ. ID. NO.: 5 or to its complement under such conditions, but for the degeneracy of the genetic code. Degenerate variants of SEQ. ID. NOS.: 1 and 5 are within the scope of the invention.
Further, this invention concerns nucleic acid probes which are fragments of the isolated nucleic acids that encode MN proteins or polypeptides as described above. Preferably said nucleic acid probes are comprised of at least 29 nucleotides, more preferably of at least 50 nucleotides, still more preferably at least 100 nucleotides, and even more preferably at least 150 nucleotides.
Still further, this invention is directed to isolated nucleic acids selected from the group consisting of:
(a) a nucleic acid having the nucleotide sequence shown in
FIGS. 15A-15F
[SEQ. ID. NO.: 5] and its complement;
(b) nucleic acids that hybridize under standard stringent hybridization conditions to the nucleic acids of (a); and
(c) nucleic acids that differ from the nucleic acids of (a) and (b) in codon sequence because of the degeneracy of the genetic code. The invention also concerns nucleic acids that but for the degeneracy of the genetic code would hybridize to the nucleic acids of (a) under standard stringent hybridization conditions. The nucleic acids of (b) and (c) that hybridize to the coding region of SEQ. ID. NO.: 5 preferably have a length of at least 29 nucleotides, whereas the nucleic acids of (b) and (c) that hybridize partially or wholly to the non-coding regions of SEQ. ID. NO.: 5 or its complement are those that function as nucleic acid probes to identify MN nucleic acid sequences. Conventional technology can be used to determine whether the nucleic acids of (b) and (c) or of fragments of SEQ. ID. NO.: 5 are useful to identify MN nucleic acid sequences, for example, as outlined in Benton and Davis,
Science,
196: 180 (1977) and Fuscoe et al.
Genomics,
5: 100 (1989). In general, the nucleic acids of (b) and (c) are preferably at least 29 nucleotides, more preferably at least 50 nucleotides, still more preferably at least 100 nucleotides, and even more preferably at least 150 nucleotides. An exemplary and preferred nucleic acid probe is SEQ. ID. NO.: 55 (a 470 bp probe useful in RNase portection assays).
Test kits of this invention can comprise the nucleic acid probes of the invention which are useful diagnostically/prognostically for neoplastic and/or pre-neoplastic disease. Preferred test kits comprise means for detecting or measuring the hybridization of said probes to the MN gene or to the mRNA product of the MN gene, such a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

MN gene and protein does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with MN gene and protein, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MN gene and protein will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282016

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.