Method and apparatus for time-sharing channelization code in...

Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S342000

Reexamination Certificate

active

06785250

ABSTRACT:

BACKGROUND
1. Field
The present invention relates generally to data communication, and more specifically to techniques for time-sharing a common channelization code among a number of terminals in compressed mode to more efficiently utilize the available channelization codes.
2. Background
Wireless communication systems are widely deployed to provide various types of communication including voice and packet data services. These systems may be based on code division multiple access (CDMA), time division multiple access (TDMA), or some other multiple access technique. CDMA systems may provide certain advantages over other types of system, including increased system capacity. A CDMA system is typically designed to conform to one or more standards, such as IS-95, cdma2000, and W-CDMA standards, all of which are known in the art and incorporated herein by reference.
The W-CDMA standard supports a “compressed mode” of operation on the downlink whereby data is transmitted from a base station to a terminal within a shortened time duration (i.e., compressed in time). The compressed mode is used in W-CDMA to allow a terminal in active communication with the system (i.e., on a traffic channel) to temporarily leave the system in order to perform measurements on a different frequency and/or a different Radio Access Technology (RAT) without losing data from the system. In the compressed mode, data is transmitted to the terminal during only a portion of a (10 msec) frame so that the remaining portion of the frame (referred to as a transmission gap) may be used by the terminal to perform the measurements.
In accordance with the W-CDMA standard, the reduction in the transmission time for a given compressed frame can be achieved by either (1) reducing the amount of data to transmit to the terminal in the frame, (2) increasing the coding rate, or (3) increasing the data rate. Each of these available mechanisms for transmitting a compressed frame is associated with tradeoffs that may impact performance, as described below.
First, reducing the amount of data to transmit in a compressed frame may be achieved via scheduling at a higher signaling layer, but the reduced amount of data may be undesirable for some applications. For example, for voice users, the reduction in the amount of data may cause a corresponding reduction in the rate of an adaptive multi-rate (AMR) vocoder down to a level (e.g., 5.15 kbps) that may result in significantly reduced quality of service.
Second, increasing the coding rate may be achieved by “puncturing” or deleting some of the coded bits (this mechanism is only available on the downlink). However, as the transmission gap increases (to up to 7 slots out of 15 possible slots in a frame), more coded bits need to be punctured, the coding rate increases, and higher transmit power is needed for the unpunctured bits to achieve the desired level of performance (i.e., a particular bit error rate or frame error rate) at the terminal. To perform inter-frequency/inter-RAT measurements, long transmission gaps (e.g., almost half a frame) will likely be required. However, puncturing is impractical for these longer transmission gaps because of the excessively high transmit power requirement.
And third, increasing the data rate may be achieved by channelizing the data to be transmitted with a shorter-length channelization code. The W-CDMA standard utilizes orthogonal variable spreading factor (OVSF) codes of various lengths to channelize the data prior to transmission to the terminals. The length or spreading factor (SF) of the OVSF codes can range from 4 to 512 chips, with shorter-length codes being capable of supporting correspondingly higher data rates. In accordance with the W-CDMA standard, a compressed frame for a particular terminal may be channelized with a channelization code of half the length (i.e., SF/2) as that of the channelization code used for non-compressed frames for the terminal. Moreover, the W-CDMA standard defines a specific relationship between the channelization code of length SF used for non-compressed frames and the channelization code of length SF/2 used for compressed frames.
The use of the specifically defined channelization code of length SF/2 for compressed frames reduces the number of channelization codes available for other uses by the system. In general, fewer codes are available for use as the spreading factor decreases, e.g., half as many channelization codes are available if the spreading factor is reduced by a factor of two. Conventionally, a channelization code of length SF/2 is assigned to each terminal operating in compressed mode and for the duration in which the terminal is in this mode. Each terminal in compressed mode would then effectively take up two channelization codes of length SF since one channelization code of length SF/2 occupies the “code space” of two channelization codes of length SF. Since W-CDMA may be code-limited on the downlink, assignment of a channelization code of length SF/2 to each terminal for the transmission of compressed frames is undesirable.
There is therefore a need in the art for techniques to more efficiently utilize channelization codes, especially in the compressed mode defined by the W-CDMA standard.
SUMMARY
Aspects of the invention provide techniques to time-share a common channelization code among multiple terminals for compressed mode transmissions. In many instances, the compressed data transmissions for a given terminal make up only a small fraction of the total time the terminal is in compressed mode, in which case allocation of a shorter-length channelization code to the terminal for the entire duration of the compressed mode operation would result in inefficient utilization of the channelization code. Techniques are thus provided herein to time-share a common channelization code for the compressed mode transmissions for multiple terminals.
In an aspect, a specific channelization code with a particular spreading factor is reserved by a base station and used for compressed mode transmissions for multiple terminals in communication with the base station. This common channelization code may be communicated to the terminals operating in compressed mode, along with values for a set of parameters that define the timing of their compressed mode transmissions. Thereafter, whenever the base station transmits data in a compressed frame to a given terminal, the common channelization code is used instead of the channelization code assigned to the terminal for normal mode.
A specific embodiment of the invention provides a method for transmitting data to a number of terminals in a wireless (e.g., W-CDMA) communication system. In accordance with the method, each terminal is initially assigned a respective channelization code used to channelize data transmitted in non-compressed frames for the terminal. A particular common channelization code used to channelize data transmitted in compressed frames for the terminals is also selected. Each compressed frame includes one or more compressed transmissions and all or a portion of a transmission gap, and the data for each compressed frame is transmitted in the compressed transmission(s). The compressed frames for the terminals are then scheduled such that the compressed transmissions for the compressed frames do not overlap. Thereafter, non-compressed frames for each terminal are channelized with the channelization code assigned to the terminal, and compressed frames for the terminals are channelized with the common channelization code.
Various schemes may be used to schedule the compressed frames. For example, the compressed frames may be scheduled such that (1) they are non-overlapping at their frame boundaries, (2) the compressed frames overlap but the compressed transmissions do not, and/or (3) the compressed frames are interlaced. The common channelization code typically has a length that is half of the length of the shortest channelization code assigned to the terminals. For each terminal in compressed mode, the scheduling and the corresponding transmission gap patter

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for time-sharing channelization code in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for time-sharing channelization code in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for time-sharing channelization code in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3279756

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.