LED light source-based instrument for non-invasive blood...

Optics: measuring and testing – Blood analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S231000, C362S241000

Reexamination Certificate

active

06816241

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The current invention relates to the field of non-invasive blood analyte measurement. More particularly, the current invention relates to a compact instrument for non-invasive blood analyte determination that employs light emitting diodes (LED's) supported on a thermally stable substrate as a source of light energy.
2. Description of Related Art
Conventional methods of clinical testing have required the use of invasive procedures, such as biopsy and phlebotomy, to sample blood and tissue. Subsequently, the samples were transported to a central location, such as a laboratory, for examination and analysis. There is an increasing trend, however, toward point-of care testing, and even in-home testing. A benefit of this trend is to minimize the turnaround time from when a sample is taken to being able to take action based on test results. At the same time, sampling procedures are becoming less and less invasive. Since they minimize or eliminate the need to handle blood and tissue specimens, minimally invasive and non-invasive procedures drastically reduce biohazard risk, both to the subject and to the practitioner.
The goal of non-invasive blood analyte measurement is to determine the concentration of targeted blood analytes without penetrating the skin. Near infrared (NIR) diffuse reflectance spectroscopy is a promising technology for noninvasive blood analyte measurement and involves the illumination of a spot on the body with low energy near-infrared light (750-2500 nm). The light is partially absorbed and scattered, according to its interaction with chemical components within the tissue, prior to being reflected back to a detector. The detected light is used to create a graph of −log R/R
s
, where R is the reflectance spectrum of the skin and R
s
is the reflectance of an instrument standard. In infrared spectroscopy, this graph is analogous to an absorbance spectrum containing quantitative information that is based on the known interaction of the incident light with components of the body.
Portable and handheld noninvasive blood glucose analyzers are being developed for point of care and in home use. The development of such devices has been hindered, in part, by the type of light source commonly used in spectrometer instruments. The conventional halogen tungsten lamp found in most spectrometer instruments is large and energy inefficient. It has a high power requirement, thus shortening battery life, generates excessive amounts of heat, requires a long time to stabilize and has a short life expectancy.
Furthermore, conventionally, light emitted from a light source is coupled into an optical probe, or otherwise directed toward a measurement site using space optics consisting of sets of mirrors and lenses. Such arrangements have high space requirements and they are highly vulnerable to mechanical shock.
The prior art provides a few examples of light source assemblies for non-invasive optical sampling. For example, F. Levinson, Light mixing device with fiber optic output, U.S. Pat. No. 5,271,279 (Dec. 14, 1993) describes a light-mixing device for a spectroscopic instrument in which a mixing rod couples light from a light source composed of LED's, die bonded into an electric header, with a plurality of optical fibers. The LED's have differing central wavelengths of emitted light and the mixing rod efficiently mixes the output of the several LED's into a single beam of light and then splits the beam in uniform fashion across the several optical fibers. The described device does not provide any means of collecting light energy emitted from a sample. It also doesn't provide any means of shaping light as it is emitted from the individual LED's. While the header of the LED assembly acts as a conduit for excess thermal energy produced by the LED's, it would be desirable to provide an active cooling element to provide an environment that maximizes energy efficiency of the LED's.
R. Rosenthal, Light probe for a near infrared body chemistry measurement instrument, U.S. Pat. No. 6,134,458 (Dec. 31, 1991) describes a light probe for a spectroscopic instrument that includes an illumination ring having external facets. LED's positioned about the facets emit light into the illumination ring; light is coupled to the measurement site by bringing the body part bearing the site into contact with the illumination ring. An optical detector is located coaxially with the illumination ring. While the Rosenthal device does provide a means of collecting light energy emitted from the site, it doesn't provide any means of mixing the light energy emitted from the several LED's. The light from the LED's is coupled directly with the probe, without the interposition of a mixer to thoroughly blend the wavelength content of the light. The Rosenthal device also does not provide any means of shaping the light beams emitted from the LED's, nor does it provide a thermally stable substrate for the LED's. Furthermore, no active cooling system is provided to optimize operating temperature of the LED's.
Spectrometer instruments for measuring concentration of blood analystes such as glucose are known. Typically, such devices are not intended to be portable. For example, K. Kaffka, L. Gyarmati, I. Vályi-Nagy, I. Gödölle, G. Domján, J. Jáko, Method and apparatus for rapid non-invasive determination of blood composition parameters, U.S. Pat. No. 5,947,337 (Oct. 26, 1999) describe an instrument for non-invasive glucose measurement. The described instrument irradiates the distal phalanx of a subject's finger with light in the near IR. The transmitted or reflected radiation is detected and analyzed and an estimate of blood glucose level made. There is no indication that the device described by Kaffka, et aL is portable or handheld. The signal is coupled with a fiber optic probe by means of a conventional arrangement of lenses and mirrors. The space requirements of such an arrangement are unsuited to a handheld device. Illumination fibers and collection fibers are provided in separate structures, also requiring excessive amounts of space.
M. Block, L. Sodickson, Non-invasive, non-spectrophotometric infrared measurement of blood analyte concentrations, U.S. Pat. No. 5,424,545 (Jun. 13, 1995) describe an instrument for noninvasive blood analyte determination that relies on calorimetric analysis to arrive at a blood analyte determination. The described device is not handheld or portable. As with the previous reference, a light beam is coupled with an illumination fiber by means of lenses and mirrors, with similar disadvantages.
T. Aldrich, Non-invasive blood component analyzer, U.S. Pat. No. 6,064,898 (May 16, 2000) describe a non-invasive blood component analyzer that also provides built-in path length monitoring to allow use in subjects of varying finger size. The Aldrich device is not a handheld or otherwise portable device. It provides a light source either from LED's or from a lamp. No structure is provided for coupling the light beam from the light source; the light is simply emitted in the vicinity of the sampling site and coupled through the atmosphere. The current device, plus all of the previously described devices for blood analyte determination, while they often employ several LED's as a light source, do not provide the LED's in structured arrays; and they do not provide substrates to lend the LED's mechanical support, thermal stability and electrical connectivity.
Handheld spectrometers are known in the prior art. K. Levin, S. Kerem, V. Madorsky, Handheld infrared spectrometer, U.S. Pat. No. 6,031,233 (Feb. 29, 2000) describe a handheld infrared spectrometer. Space is conserved by aligning the optics and eliminating fibers. Light is emitted from a conventional lamp and passed through an acousto-optical tuning filter (AOTF) for wavelength selection. The filtered light is focused through one or more lenses and directed toward the measurement site through a window.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

LED light source-based instrument for non-invasive blood... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with LED light source-based instrument for non-invasive blood..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and LED light source-based instrument for non-invasive blood... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3279649

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.