Pre- and post-treatment system and method for aquatic plant...

Liquid purification or separation – Processes – Treatment by living organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S631000, C210S170050, C210S202000, C210S259000, C210S908000

Reexamination Certificate

active

06783676

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to systems and methods for improving water quality, and, more particularly, to such systems and methods for bioremediating water with an attached algal colony, or other aquatic plants and, most particularly, to treating water against toxic compounds, microorganisms, and other water born pollutants in concert with an attached algal colony or other aquatic plants using ozone (O
3
).
Algae comprise a group of aquatic plants with over 18,000 species and there are many times more aquatic plants growing rooted to the bottom and attached to other plants, floating and a mixture of both. As with terrestrial plants, the primary nutrients carbon, nitrogen and phosphorus, as well as a suite of micronutrients are essential for growth. Algae have developed the ability to exist where nutrients are in very short supply through many complex and unique biological pathways.
The removal of carbon, nitrogen and phosphorus and the micronutrients has become key to improving the quality of polluted water and restoring ecological balance. It is widely known that many aquatic plants absorb metals beyond immediate needs thus bio-concentrating them within plant cells as they remove them from water. Algae and other aquatic plants can take up primary and micronutrients that may be in overabundance, such as carbon, nitrogen, phosphorus, potassium, iron, aluminum, calcium and other substances and thus can be utilized to remediate an ecosystem. The preferred embodiment will from here on be referred to as attached algae, but any aquatic plant may be used for nutrient uptake so long as it extracts its nutrients from the water and can be harvested from the water to be improved.
Atmospheric remediation can occur when water flows over stationary algae or periphyton which, like all plants, require carbon. Periphyton has a higher productivity than any terrestrial plant. As modeled in the partial pressure of gas laws this creates significant consumption of carbon dioxide. Conservatively, 20 times more CO
2
(in the form of bicarbonate) is absorbed by periphyton as is absorbed by a mature forest land on an equal area. Significantly higher cell productivity of periphyton greatly affects O
2
production producing many times more O
2
per unit area.
Water remediation by regularly harvested periphyton has been shown to be 50 to 1000 times higher than constructed wetland systems per unit area. Remediation can occur when water flows over stationary algae taking up macro nutrients (carbon, nitrogen and phosphorus) and micro nutrients, while discharging oxygen as high as 3 times saturation. This high oxygen and hydroxyl environment has shown to reduce organic sediments by 0.25 meters per year. In long runs periphyton have been shown to increase pH due to carbon uptake to as high as 11. Filtration can occur through adsorption, absorption, physical trapping, and other more complex means.
A system used to effect this uptake is known as a “periphyton filter,” the periphyton comprising a culture of a family of fresh, brackish, and or salt water plants known as “attached algae.” Unlike such organisms as free-floating plankton, benthos or attached algae is a stationary community of epiphytes that will grow on a wide variety of surfaces. When occurring in the path of flowing water, the stationary algae and associated organisms remove nutrients and other compounds from the passing water, while absorbing carbon dioxide and releasing oxygen as a result of respiration, in turn a result of photosynthesis. Once an algal colony or community is established, roots or holdfasts cover the culture surface. If the plant bodies are harvested, leaving the roots behind, the nutrients and other pollutants contained in the plant bodies are removed from the water. Trapped in and around plant biomass nutrients can be exported continuously from a water stream, causing a natural filtration effect.
A further advantage to this technique is that the enriched algae can be harvested and used as a fish or animal feed, which serves to return the nutrients to the food chain.
Periphyton filters (PF) have the potential for use in a variety of applications. For example, the periphyton can be used to replace biological or bacterial filters in aquaria as pioneered by Stork and developed by Adey. As mentioned, natural periphyton can be used to remove nutrients and other contaminants from polluted waters. In addition, by harvesting the algal mass, various processes can be used to produce a biomass energy source such as methane or ethanol, fertilizer, a human or animal food additive or supplement, cosmetics, or pharmaceuticals.
The high productivity of the algae in a fibrous form has also yielded uses in the paper and paper products industry, as the harvested algae are many times stronger and easier to process than wood fiber. The limiting factor in many paper production lines is wet strength. Algal fibers can have exceptional wet strength, which can enhance paper production rates while removing nutrients from the paper plant waste stream thus enhancing the environmental preferability of a product. Most paper plants produce high nutrient waste streams which can be greatly enhanced by periphyton culture systems while producing cleaner water outflow and fiber which can be used to enhance the products manufactured by the plant. This capability has resulted in an economically, socially and environmentally sustainable method of managing human impact on aquatic ecosystems.
Triatomic oxygen or O
3
(ozone) is a naturally occurring gas created by the force of corona discharge during lightning storms or by UV light from the Sun. It is common knowledge that O
3
occurs in an upper atmospheric layer and is critical to the temperature balance on Earth.
O
3
in the lower atmosphere is viewed as a pollutant, however man-made O
3
systems are fitted with simple destruction technology that completely eliminates concerns about O
3
use by man. Such systems are widely used for drinking and wastewater treatment as well as air filtration with doses bearing healthy safety factors.
O
3
is 1.5 times as dense as oxygen and 12.5 times more soluble in water and with high doses leaves no residuals or byproducts except oxygen and a minimal amount of carbon dioxide, trace elements and water. It can be manufactured from dry air or from oxygen by passing these, gases through an electric field of high potential sufficient to generate a “corona” discharge between the electrodes. This corona discharge is not quite the energy of an automotive spark plug, but just under that level. Ultraviolet light and shorter wavelength radiation also causes oxygen to undergo conversion to O
3
, which may be used for industrial wastewaters (Belew, 1969). O
3
is a more potent germicide than hypochlorite acid by factors of 10 to 100 fold and disinfects 3125 times faster than chlorine (Nobel, 1980).
O
3
is highly unstable and must be generated on site. The measure of an oxidizer and its ability to oxidize organic and inorganic material is its oxidation potential (measured in volts of electrical energy). O
3
's oxidation potential (−2.07V) is greater than that of hypochlorite acid (−1.49V) or chlorine (−1.36V), the latter agents being widely used in water treatment practice.
A residence time is required for the ozone gas in the water to be used up as it contacts particles to oxidize them. Typically this is done with large mixing chambers and mixing pumps. Many times the site of a periphyton filter is some distance from the water to be treated. With mixing occurring just downstream of the supply pump or pie entrance at single or multiple static mixers, integration can be included in the pipe and then the residence time in the pipe allows for treatment as the water travels to the periphyton filter. This extended contact time can provide increased treatment. Multiple static mixers and ozone injection points may be employed for optimum efficiency. Economical covered ponds can also b used for increased contact time.
Pumping water down a feed tube

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pre- and post-treatment system and method for aquatic plant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pre- and post-treatment system and method for aquatic plant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pre- and post-treatment system and method for aquatic plant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3274073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.