Ink jet recording element

Stock material or miscellaneous articles – Ink jet stock for printing – Paper support composition specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S032250, C428S032260, C428S032270, C428S032280, C428S032300, C428S032340

Reexamination Certificate

active

06723397

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a porous ink jet recording element.
BACKGROUND OF THE INVENTION
In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An ink jet recording element typically comprises a support having on at least one surface thereof at least one ink-receiving layer. The ink-receiving layer is typically either a porous layer that imbibes the ink via capillary action, or a polymer layer that swells to absorb the ink. Swellable hydrophilic polymer layers take an undesirably long time to dry. Porous ink-receiving layers are usually composed of inorganic or organic particles bonded together by a binder. The amount of particles in this type of coating is often far above the critical particle volume concentration, which results in high porosity in the coating. During the ink jet printing process, ink droplets are rapidly absorbed into the coating through capillary action and the image is dry-to-touch right after it comes out of the printer. Therefore, porous coatings allow a fast “drying” of the ink and produces a smear-resistant image.
Ink jet prints, prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to damage resulting from contact with water and atmospheric gases such as ozone. The damage resulting from the post imaging contact with water can take the form of water spots resulting from deglossing of the top coat, dye smearing due to unwanted dye diffusion, and even gross dissolution of the image recording layer. Ozone bleaches inkjet dyes resulting in loss of density. To overcome these deficiencies, ink jet prints are often laminated. However, lamination is expensive as it requires a separate roll of material.
U.S. Pat. Nos. 4,785,313 and 4,832,984 relate to an inkjet recording element comprising a support having thereon a fusible, ink-transporting layer and an ink-retaining layer, wherein the ink-retaining layer is non-porous. However, there is a problem with this element in that it has poor image quality.
EP 858, 905A1 relates to an ink jet recording element having a porous, outermost layer formed by heat sintering thermoplastic particles such as polyurethane which may contain a slight amount of a hydrophilic binder such as poly(vinyl alcohol). However, there is a problem with this element in that it has poor resistance to mechanical abrasion when it does not contain a hydrophilic binder, and poor water-resistance when it does contain a hydrophilic binder.
It is an object of this invention to provide an inkjet recording element having a fusible protective uppermost layer and ink-retaining underlayer which can be printed with ink jet inks without bleed. It is another object of the invention to provide a porous ink-transporting layer that has good mechanical integrity and is abrasion resistant. It is another object of the invention to provide a protective uppermost ink-transporting layer that is thermally fusible and thereby can be rendered water resistant. It is another object to provide an inkjet recording element that can be thermally fused to provide high density of the printed image.
SUMMARY OF THE INVENTION
These and other objects are achieved in accordance with the invention which comprises an ink jet recording element comprising a support having thereon in order:
a) at least one porous, ink-retaining layer; and
b) a fusible, porous ink-transporting layer comprising fusible, polymeric particles and a film-forming, hydrophobic binder.
By use of the invention, a porous ink jet recording element is obtained that has good abrasion resistance, and which when printed with an ink jet ink, and subsequently fused, has good water-resistance and high print density.
DETAILED DESCRIPTION OF THE INVENTION
The fusible, polymeric particles employed in the invention may have any particle size provided they will form a porous layer. In a preferred embodiment of the invention, the particle size of the fusible, polymeric particles may range from about 0.5 to 10 &mgr;m. The particle may be formed from any polymer which is fusible, i.e., capable of being converted from discrete particles into a continuous layer through the application of heat and/or pressure. In a preferred embodiment of the invention, the fusible, polymeric particle comprises a condensation polymer, a styrenic polymer, a vinyl polymer, an ethylene-vinyl chloride copolymer, a polyacrylate, poly(vinyl acetate), poly(vinylidene chloride), a vinyl acetate-vinyl chloride copolymer. In still another preferred embodiment, the condensation polymer may be a polyester or polyurethane.
The film-forming, hydrophobic binder useful in the invention can be any film-forming hydrophobic polymer capable of being dispersed in water. In a preferred embodiment of the invention, the hydrophobic binder is an aqueous dispersion of an acrylic polymer or a polyurethane.
The particle-to-binder ratio of the particles and binder employed in the ink-transporting layer can range between about 98:2 and 60:40, preferably between about 95:5 and 80:20. In general, a layer having particle-to-binder ratios above the range stated will usually not have sufficient cohesive strength; and a layer having particle-to-binder ratios below the range stated will usually not be sufficiently porous to provide good image quality.
In a preferred embodiment of the invention, the ratio of the mean volume weighted size of the dispersed film forming hydrophobic polymeric binder particles to the fusible, polymeric particles is preferably 0.15 to 1, and more preferably greater than 0.41 to 1, as determined by a Horiba LA-920 Laser Scattering Particle Size Distribution Analyzer (Horiba Instruments, Inc.). While not being bound by any theory, it is believed that if the ratio is below the lower limit stated, the binder particles pass through the interparticle voids between the larger fusible particles, and deposit at the interface with the ink-retaining layer. The resultant structure blocks ink flow into the ink-retaining layer, resulting in undesirable bleed. The interparticle voids are taken to be the radius in the plane of contact of the interstice, r, formed by three spheres of radius, R. In a close packed array, r=0.15R, and in the more open array of square packed spheres r=0.41R.
The ink-retaining layer can be any porous structure, but it is preferred that the mean pore radius is smaller than the uppermost ink-transporting layer. Thus, if the ink-retaining layer is composed of particles and binder, the particles will be significantly smaller than the fusible, polymeric particles in the upper ink-transporting layer, thereby assuring a correct pore-size hierarchy.
In general, the ink-retaining layer or layers will have a thickness of about 1 &mgr;m to about 50 &mgr;m, and the top ink-transporting layer will usually have a thickness of about 2 &mgr;m to about 50 &mgr;m. In a preferred embodiment, the ink-retaining layer is present in an amount from about 1 g/m
2
to about 50 g/m
2
, preferably from about 5.0 g/m
2
to about 30 g/m
2
.
In a preferred embodiment of the invention, the ink-retaining layer is a continuous, co-extensive porous layer which contains organic or inorganic particles. Examples of organic particles which may be used include core/shell particles such as those disclosed in U.S. Ser. No. 09/609,969 of Kapusniak et al., filed Jun. 30, 2000, and homogeneous particles such as those disclosed in U.S. Ser. No. 09/608,466 of Kapusniak et al., filed Jun. 30, 2000, the disclosures of which are hereby incorporated by reference. Examples of organic particles which may be used include acrylic resins, styrenic resins, cellulose derivatives, polyv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink jet recording element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink jet recording element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink jet recording element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3271557

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.